
AD-A253 325 Technical Report

--_ _ Carnegie-Mellon University

- Software Engineering Institute

DTIC
!LECTF
ULO 1992

Ada Validation Tests for
Rate Monotonic Scheduling

* Algorithms
/ Keith A. Kohout

Kent Meyer
John B. Goodenough

/

/,February 1992

// /

vu'io WHOM~1.AwlPaved 1w pub&.-
Dbwtmu~m Unimftd

220/9

* *

92__S- 2102_98

The following statement of dssurance is more than a statementl requ~.mo to comply w 11, the miedel lanw rh, -, socpre statempnt 1b, thp n, i~ers't t. isn, at all
oeo(Ae ale nCluded in thip rjnerst1 which rnakes Carnegie Mellon an oxfrtg tsaCe CarneeMto hstoct noeni.tr' 4 ' 5ae'. . v

ogin se- handcrartrigo creed ancestry betief age jeteran statis or ;eaxual otertalon

Carnegiye Mellon Unn~rSty does not dscrrnnale and Carnegie Mellon Universry S riegr not to fon, ~ rt 1,1- oons and l!o -(! "Wt.n '

nco, national rrqn ,en or hardcavo n otaton oft Ttte Vt of the Civl Rights Art of 1964 the1 IX 0f the Ft'nt~ Armendment, ol 197,1 jrr Sffi t ..n, So tt,
Rehabltaf on Act ot 1973 or other federal. state, or local law , or executne orders In adloton Carnpeje Men" djoeS nOt (1-,'ft nol" It I OS'S Ott " Is"r a!
the bass of religion creed ancestry betef age. veterarn stats or sexual orentaton , violation of any tederat slte or tno 1 I.W,~ or ecrs rder'; ,oE one'
nq application of this poicys;houtd bedirected to the Protsl Granegie Mellon tjn~vprst1V 5W) F frte Ave,,fr,t~q PA !r'Ir['np-n 4t22frfhkO66., Itt

V-cef President tor Enrolmrent Carnegie Melton Unversty 5000 Forbes; Avenue Pttshogt, PA 15213 teeprtlooe (412) ;F)8 1

Technical Report

CMU/SEI-92-TR-1
ESD-92-TR-1

February 1992

Ada Validation Tests for
Rate Monotonic Scheduling

Algorithms

Keith A. Kohout
Naval Weapons Center

Kent Meyer
Telesoft, Inc.

John B. Goodenough
Rate Monotonic Analysis for Real-Time Systems

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

C John S. Herman, Capt. USAF
;SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the U.S. Department of Defense.
Copyright 0 '1992 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy. please contact DTIC directly: Defense Technical Information
Center. Attn: FDRA. Cameron Station, Alexandria, VA 22304-6145.
Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS direcly: National Technical Information Service. U.S. Department of Commerce. Springfield. VA 22161.

Copies of this document are also available from Research Access, Inc.. 3400 Forbes Avenue. Suite 302, Pittsburgh. PA 15213.

Use of any trademark& in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

1 Introduction 1

2 Test Specifications 3
2.1 Priority Service (PS) Tests 3
2.2 Basic Inheritance (BI) Tests 3
2.3 Priority Ceiling (PC) Tests 5

3 Test Generator 9
3.1 Requirements 9
3.2 Customization 10

4 Test Harness and Test Coding Style 11
4.1 Server Coding Style 11
4.2 Test Harness Services 11

4.2.1 Events to be Logged 12
4.2.2 Client/Server Event Patterns 13
4.2.3 Event Timeline Example 14
4.2.4 Additional Software Support 14

4.3 Customization 15

5 Comparator 17
5.1 Comparator Output and Error Messages 18
5.2 Customization 19

6 User's Guide 21
6.1 Directory Release Structure 21
6.2 Testing Process 22

6.2.1 Test Generator Usage 22
6.2.2 Test Harness Usage 22
6.2.3 Comparator Usage 24

References 25

Appendix A Logical Test Suite Diagrams 27

Appendix B Logical Test Suite Expected Events 61

Appendix C Example of Test Specification 87

CMU/SEI-92-TR-1

Appendix D Code for Test Case BI_05 91
D.1 BI 05 Test_Harness Package Specification 91
D.2 BI 05 Client_Cl_Package Specification 91
D.3 BI 05 ClientC2_Package Specification 91
D.4 BI 05 Client C3 Package Specification 92
D.5 BI 05 Server_SiPackage Specification 92
D.6 BI._05 Server S2 Package Specification 92
D.7 BI 05 Test_Harness Package Body 93
D.8 BI 05_Client_Cl_Package Body 94
D.9 BI 05 Client C2 Package Body 95
D.10 BI 05 ClientC3_Package Body 96
D.1 1 B 105 ServerS1_Package Body 97
D.12 BI 05 ServerS2_Package Body 98
D.13 Main Procedure for BI_05 98

Appendix E Obtaining Source Code and Information 99

Acoession For

!ITIS (?&
DTI(' TAB
unarnno'1ined C3
Ju3t '* 103A0.e

By
ist rtut J .

iia CMU V C-d- -

H CMU/SEI-92-TR-1

List of Figures

Figure 1 Logical Test System Components 2
Figure 2 Server Coding Style 12
Figure 3 Example Timeline 14
Figure 4 Comparator Data File Example 17
Figure 5 Comparator Output Example 18
Figure 6 Directory Release Structure 21
Figure 7 Compilation Order for Generator Tool 23
Figure 8 Compilation Order for the Test Harness Files 23
Figure A-1 Example Test Case 28
Figure A-2 PS_01: High-Priority Clients Preempt 29
Figure A-3 PS_02: Low-Priority Clients (2) Don't Preempt 30
Figure A-4 PS_03: Low-Priority Clients (4) Don't Preempt 31
Figure A-5 BI_01: Check for Inheritance Blocking 32
Figure A-6 BI_02: Server Priority Is Raised in Sfages 33
Figure A-7 BI_03: Inheritance Is Transitive 34
Figure A-8 BI_04: Transitive Inheritance with Preemption 35
Figure A-9 BI_05: Transitive Inheritance with Server at High Priority 36
Figure A-1 0 BI_06: Delayed Server Doesn't Block 37
Figure A-1 1 BI_07: Delayed Servers Don't Block 38
Figure A-1 2 BI_08: Immediate Rendezvous with Server 39
Figure A-13 BI_09: Complex Example #1 40
Figure A-1 4 BI_09 Events 41
Figure A-15 BI_10: Complex Example #2 42
Figure A-16 BI_10 Events 43
Figure A-1 7 PC_01: Simple Ceiling Blocking 44
Figure A-1 8 PC_02: Deadlock Avoidance (2 tasks) 45
Figure A-1 9 PC_03: Blocked at Most Once 46
Figure A-20 PC_04: Blocked at Most Once (Nested Calls) 47
Figure A-21 PC_05: Servers Don't Execute Above Ceiling Priority 48
Figure A-22 PC_06: Correct Task Resumes 49
Figure A-23 PC_07: Delayed High-Priority Server Doesn't Block 50
Figure A-24 PC_08: Deadlock Avoidance (3 Tasks) 51
Figure A-25 PC_09: Deadlock Avoidance (3 Tasks) 52
Figure A-26 PC.10: Ceiling Blocking Works When Server Is Delayed 53

CMU/SEI-92-TR-1 iii

Figure A-27 PCI 1: Complex Example #1 54
Figure A-28 PC_I 1: Events 55
Figure A-29 PC_12: Complex Example #2 56
Figure A-30 PC_12: Events 57
Figure A-31 PC_12: Events When Servers Are Non-Preemptible 58
Figure A-32 PC_12: Events When Servers Execute at Ceiling Priority 59
Figure A-33 PC_13: Priority of Ceiling-Blocked Task Is Inherited 60
Figure B-1 Expected Events for PS_01 61
Figure B-2 Expected Events for PS_02 62
Figure B-3 Expected Events for PS_03 63
Figure B-4 Expected Events for BI_01 64
Figure B-5 Expected Events for BI_02 65
Figure B-6 Expected Events for BI_03 66
Figure B-7 Expected Events for BI_04 67
Figure B-8 Expected Events for BI_05 68
Figure B-9 Expected Events for BI_06 69
Figure B-10 Expected Events for BI_07 70
Figure B-1I Expected Events for BI_08 71
Figure B-12 Expected Events for BI_09 72
Figure B-1 3 Expected Events for BI_10 73
Figure B-14 Expected Events for PC_01 74
Figure B-15 Expected Events for PC_02 75
Figure B-16 Expected Events for PC_03 76
Figure B-17 Expected Events for PC_04 77
Figure B-1 8 Expected Events for PC_05 78
Figure B-19 Expected Events for PC_06 79
Figure B-20 Expected Events for PC_07 80
Figure B-21 Expected Events for PC_08 81
Figure B-22 Expected Events for PC_09 82
Figure B-23 Expected Events for PC_10 83
Figure B-24 Expected Events for PC_ 1i 84
Figure B-25 Expected Events for PC_12 85
Figure B-26 Expected Events for PC_13 86

iv CMU/SEI-92-TR-1

Ada Validation Tests for Rate Monotonic Scheduling
Algorithms

Abstract: This report presents a set of tests for checking whether an Ada
runtime system properly supports certain rate monotonic scheduling
algorithms, specifically, the basic inheritance and priority ceiling protocols.
These tests are intended to be used by vendors and by users to validate
implementations of these protocols. The report describes the tests and how
they are to be used. The source code is available electronically.

1 Introduction
Rate monotonic scheduling (RMS) theory [Sha 90] allows a software designer to predict ana-
lytically whether a software system will meet its deadlines. The theory can also be used on
developed software systems to help locate timing anomalies and performance bottlenecks. A
major advantage of using RMS theory is that it allows systems to be built in which the software
structure is not distorted by timing issues [Sha 90].

This report is designed to help runtime system developers and end users determine if a given
Ada runtime system supports certain rate monotonic scheduling algorithms. Two related prod-
ucts are discussed: a set of tests that check for likely implementation errors in runtime system
support for RMS algorithms and some tools that make it easier to use these tests.

Two types of tests are needed to check how well a runtime system supports a scheduling al-
gorithm: logical tests that check whether the algorithm has been implemented correctly, and
performance tests that measure the efficiency of an implementation. This report discusses
only those logical tests needed to check the priority inheritance protocols [Sha 90] (basic in-
heritance and priority ceiling). The sporadic server algorithms [Sprunt 89] are not tested at this
time; performance tests are tinder development.

This suite of tests assumes that Ada application programs use the monitor task paradigm to
implement critical regions protected by a semaphore. A monitor task (called a server task in
the remainder of this report) is a task that ensures mutually exclusive access to some resource
through a critical region protected by a semaphore. In Ada, the way to represent such critical
regions is with a task whose body is a single select statement enclosed in an endless loop.
The task serves the role of the semaphore and the accept alternatives within the select state-
ment serve as different critical regions. Non-server tasks are called client tasks. Such tasks
may call server tasks. To model a nested critical region, a server task calls another server task.

The logical test system described in this report contains several components (see Figure 1).
The next section briefly describes the test objectives for each of the logical tests. (Detailed ob-
jectives are specified in Appendix A.) Section 3 describes a program generator for creating
specified tests. Section 4 describes the test harness that supports the execution of specified
tests. Section 5 describes a comparison tool for checking test results. The final section is a
user's guide that describes the steps of compiling, executing, and evaluating the tests.

CMU/SEI-92-TR-1 1

Test Specifications TEST SPECIFICATION
The logical test specifications are summarized beginning on
page 3; detailed specifications are given in Appendix A.

Test Generator TEST GENERATOR
The logical test generator is described on page 9. This tool is

F~j1 171written in Ada. it automatically generates test files. Two gen-
lody erator packages, generatorstructure and test._characteris-

tics, are used to specify the characteristics of the tests to be
mmte e gentorstre generated. The tests described in this document were gener-

ated with this tool. The generator is provided to allow further
development or modification of test cases.

generat or d actisticP' a

Logical Tests and Test Harness LOGICAL TESTS and TEST HARNESS
The test harness that supports test case execution is dis-

rBO m ['cussed on page 11. The generator produces individual test
P4ZlO l~ ILcase files and a harness .constants package. The generated

_i t "- tost files 'with" the routines provided in the test harness (event
logging, 1/O, vendor interface, etc). The test harness and the

Y individual tests must be compiled together. Each test is linked
into a separate load module that can be executed on the tar-

ha-mu--_support get machine. The comparator is then used to check the exe-

cution output of each test against the expected results. Some
Test Harness modification of the harnessconstants and vendor-specifics

hae evet I 7OdyMangs packages may be required for a given implementation.

Comparator
~ COMPARATOR

The comparator is described on page 17. Like the generator,
the comparator is written in Ada and runs on the host system.
The comparator checks test execution output against the ex-
pected output (see Appendix B).

M.. CO•pare.dat

USER'S GUIDE
The user's guide, on page 21, presents the steps that should
be taken to modify, compile, link, execute, and check the log-
ical tests.

Figure 1 Logical Test System Components

2 CMU/SEI-92-TR-1

2 Test Specifications

Thb tests described in this document check the logical behavior of a runtime system that sup-
ports the basic inheritance (BI) and priority ceiling protocols (PCP). Each test checks an im-
portant protocol behavior. Three categories of behavior are checked.

1. Priority service: executing tasks are preempted by tasks of higher priority.

2. Basic inheritance: a server is executed at either the priority of the task being
served or at the priority of a caller whose call is unable to be accepted,
whichever is higher. Moreover, blocked callers are serviced in order of
priority, not in order of arrival.

3. Priority ceiling: in addition to basic inheritance, a server task is not allowed to
accept a call unless its prioriy ceiling1 is higher than the priority ceiling of any
server that is executing a call on behalf of another client task. Since this rule
introduces a new reason for not accepting entry calls, if a server's priority
ceiling causes an entry call to be blocked, the server blocking the call inherits
the blocked caller's priority.

The tests that follow are described in detail in Appendix A.

2.1 Priority Service (PS) Tests
Higher-priority clients, when they become eligible to run, must preempt Icwer-priority clients.

- PS_01: Check for preemption of lower-priority clients by higher-priority
clients.

Low-priority clients are not allowed to preempt high-priority clients. In a priority-based sched-
uling system, only higher-priority clients are allowed to preempt. This is not true of a time-
sliced scheduling system.

" PS_02: Check that low-priority client tasks are not executed in favor of high-
priority clients (for two low-priority clients).

" PS_.03: Check that low-priority client tasks are not executed in favor of high-
priority clients (for four low-priority clients).

2.2 Basic Inheritance (BI) Tests
Medium-priority clients are prevented from executing (inheritance blocking) when a high-prior-
ity client is waiting to use a server that has been called by a low-priority client. This is because
the server is executed with the waiting caller's priority.

- BI_01: Check for inheritance blocking. When a server is in rendezvous with
a low-priority client, the server should inherit the priority of any (higher-
priority) caller, thereby ensuring that medium-priority tasks do not execute.

1. The priority ceiling of a server is the highest priority of all client tasks that can call it directly or indirectly.

CMU/SEI-92-TR-1 3

A server should inherit the highest priority of the clients that are waiting for the server. More-

over, queued clients should be serviced in priority order.

- BI_02: Check that a server executes at the highest priority of all waiting
clients' priorities and that the server's priority is lowered after a high-priority
client is served. Also, check that blocked clients are serviced in priority order,
i.e., when more than one client is waiting for a server, the highest-priority
waiting client should execute next.

The ndxt tests check for transitive inheritance, namely, that a client's priority is transmitted

through one server to subsequent servers.

" BI_03: Check for transitive inheritance of client's priority. A nested server
should inherit the server's inherited priority, and hence, if a lower-priority task
becomes ready to execute while a nested server call is being performed, the
lower-priority task should not execute.

" BI_04: Check for transitive inheritance of a client's priority and verify that
higher-priority clients can preempt the execution of a nested server call.

" BI_05: Check that if a high-priority client calls a server while it is executing a
nested server call, no medium-priority tasks are allowed to execute (since the
server inherits the priority of the waiting client).

Servers that are delayed (suspended while executing a delay statement) do not block other
tasks from executing. This avoids unnecessary periods of idle time.

* BI_06: Check that a delayed server running on behalf of a high-priority client
allows a lower-priority client to execute.

* BI_07: Check that a delayed server running on behalf of a high-priority client
allows a lower-priority client to execute and call other servers. This test does
not apply to implementations that support the priority ceiling protocol (see
PC_07).

To minimize runtime system overhead, when a server has completed a rendezvous, it is ex-
pected to continue to execute until it is ready to accept another entry call instead of giving up
control as soon as the rendezvous is completed.

* BI_08: Check that servers are either executing or are ready to accept an

entry call.

Examples from CMU/SEI-89-TR-15 [Borger 89] that combine preemption, direct blocking, in-

heritance (push-through) blocking, simple inheritance, and transitive inheritance:

" BI_09: Check for preemption, blocking, inheritance, and proper priorities of
tasks for BI (similar to Example #1 in CMU/SEI-89-TR-1 5). (PC_ 11 tests for
behavior of the same task set when the priority ceiling protocol is supported.)

" BI_10: Check for preemption, blocking, inheritance, and proper priorities of
tasks for BI (similar to Example #2 in CMU/SEI-89-TR-15). (PC_12 tests for
behavior of the same task set when the priority ceiling protocol is supported.)

4 CMU/SEI-92-TR-1

2.3 Priority Ceiling (PC) Tests
The priority ceiling algorithm, in its pure form, requires that a server execute at either the pri-
ority of its caller or at the priority of a blocked calling task, whichever is higher. The tests pre-
pared in association with this paper check for this behavior. But there are two alternative forms
of implementation that have essentially the same effect on worst-case schedulability and that
can be easier or more efficient to implement. The simplest implementation is to execute each
server at the highest possible priority. This means servers execute in a non-preemptible fash-
ion. It also means that the worst-case blocking time for any task is the longest critical region
(rendezvous) executed by any lower-priority server task. In cases where all critical regions are
short, this approach has little effect on overall system schedulability. An additional advantage
is that no caller is ever queued on a server as long a! the server never suspends its execution;
every server call can be accepted (on a uniproce~sor architecture) because once the call is
accepted, no other task can run to make any call; it is never necessary to make a context
switch because a call is blocked. We call this form of implementation the non-preemptible-
server emulation method.

The second implementation method (the server-ceiling emulation method) is to have each
server execute at its ceiling priority. In this case, higher-priority tasks will be able to execute
and will be able to call servers, thereby improving the average-case performance and in some
cases, improving their worst-casu -, .formance over the emulation by preemption method.
This method is only equivalent to me priority ceiling protocol if the server task does not sus-
pend itself while a rendezvous, thereby allowing lower-priority tasks to run. The example in
Figure A-23 (for PC_07) shows the kind of situation in which the server-ceiling emulation meth-
od could potentially lead to deadlock or chained blocking.

If an implementation supports one of the priority ceiling emulation methods, the sequence of
task executions will, in general, be different. Specific differences are described in Appendix A.

In a pure implementation of the priority ceiling protocol, a high-priority call by a client to an
available server can be blocked just because of the priority ceiling protocol rule; this form of
blocking is called ceiling blocking.

• PC_01: Check that a high-priority task's call to an available server is blocked
when the caller's priority does not exceed the priority ceiling of a server task
that is in rendezvous with a lower-priority task.

Mutual deadlock is prevented by the priority ceiling protocol. The protocol prevents clients from
deadlocking if they attempt to call the same set of servers in different orders.

* PC_02: Check for deadlock avoidance involving two clients.

If a high-priority client accesses two or more servers that are also accessed by lower-priority
clients, the priority ceiling protocol ensures that the high-priority client will be blocked by at
most one lower-priority client's rendezvous with a server. This is because medium-priority cli-

CMU/SEI-92-TR-1 5

ents are not allowed to begin any server calls once a server with a high-priority ceiling is exe-
cuting.

" PC_03: When lower-priority tasks access the same servers, check that a
client is prevented from accessing its servers at most once, and that there are
no nested server calls.

• PC_04: When there are nested server calls, check that a client is prevented
from accessing its servers at most once when lower-priority tasks access the
same servers.

Clients with priorities above a server's priority ceiling are not blocked from rendezvousing with
other servers. The next tests check that servers do not execute above their priority ceiling.

" PC_05: Check that a client with a priority above a preempted server's ceiling
can rendezvous with a ready server.

" PC_06: Check that a client with a priority above a preempted server's ceiling
can rendezvous with a ready server. This test will fail if servers are executed
at their ceiling priority.

Servers that are delayed do not block ready tasks from executing. However, if a lower-priority
task, C2, attempts to call a server while a high-priority task is delayed in a server rendezvous,
C2 must be prevented from calling the server, since C2's priority cannot exceed the ceiling of
the executing server.

* PC_07: Check that a delayed server running on behalf of a high-priority client
allows a lower-priority client to execute, but that calls to other servers by the
lower-priority task will be blocked. (This test is the same as BI_07, but the
expected results are different when the priority ceiling protocol Is being
supported.)

The next two tests provide somewhat more complex deadlock avoidance tests.

• PC_08: Check for deadlock avoidance (three clients).

" PC_09: Check for deadlock avoidance (three clients).

Periods of idle time can exist if no tasks are eligible to run. Servers that are delayed allow
lower-priority ready tasks to execute as long as no server calls are made.

- PC_10: Check that delayed servers don't block lower-priority clients.

Examples from CMU/SEI-89-TR-23 [Borger 89] that combine preemption, direct blocking, in-
heritance (push-through) blocking, simple inheritance, transitive inheritance, and ceiling block-
ing:

PC_ 1: Check for preemption, blocking, inheritance, and proper priorities of
tasks for PCP (similar to Example #1 in CMU/SEI-89-TR-15). The output
from this test will be different from the output for BI_09 even though the
pattern of client and server calls is the same in both tests.

6 CMU/SEI-92-TR-1

• PC_12: Check for preemption, blocking, inheritance, and proper priorities of
tasks for PCP (similar to Example #2 in CMU/SEI-89-TR-15). As for PC_I 1,
the output from this test will be different from the output for BI_10 even
though the pattern of client and server calls is the same in both tests.

The next test checks that if a server is indirectly blocking one or more high-priority tasks, the
server executes with the highest priority of the blocked tasks. This situation can arise when
the priority ceiling of the server is higher than the priority of the calling tasks, and the calling
tasks are calling other servers.

- PC_13: Check that a server is executed with the priority of tasks that are
ceiling-blocked in attempting to call other servem- This test checks when
there are two ceiling-blocked tasks and ensures that the highest-priority
blocked task is executed first.

CMU/SEI-92-TR-1 7

8 CMU/SEI-92-TR-1

3 Test Generator

The test cases all have a very similar structure, so they can be generated automatically from
a specification of test behavior. The specification format allows a user to describe test cases
in terms of the test case diagrams shown in Appendix A. As new tests are developed or as
tests change, a new diagram should be created that specifies the expected test behavior and
the expected sequence of calls.

3.1 Requirements

The purpose of the generator is to produce a suite of test cases automatically from a descrip-
tion of the tests. The generator was developed to meet the following requirements.

1. Generate each test as a stand-alone program.

2. Create no dependent tasks (i.e., all tasks will be created at the library level).
This provides compilers with the maximum opportunity to optimize server
tasks and also reflects expected practice.

3. Allow for task suspension in a server. Task suspension represents a delay in
processing. In a real system, a delay could be caused by I/O.

4. Comply with the recommended server coding style (which gives maximum
opportunity for compiler optimization):

" Set priority ceilings outside of the server tasks.
" Have the generator compute the priority ceiling of each server task. This

keeps the user from having to specify the server's priority ceiling.
" Use the terminate alternative in servers rather than a STOP entry call to

shut down server tasks.
" Don't use an exception handler in the body of a server.
" Don't give server tasks a priority using pragma PRIORITY. This allows the

priority inheritance and the priority ceiling protocols to be supported by a
validated Ada compiler [Sha 90]. (Servers can be given a priority by some
other mechanism, however, such as a runtime system call.)

5. Isolate possible test harness dependencies (e.g. TEXT_10, delay.until). This
separates the possible changes that users may have to make.

6. In a client's exception handler, spell out "Unexpected exception in Client_N
Task". This gives more information to the user.

7. Rather than placing all clients and servers in one package, place each client
and server in its own package. This better mirrors an actual code structure
that would be used in practice.

8. Allow the generator to accept an arbitrary number of parameters that specify
the structure of the tasks for the given logical test. This allows for maximum
flexibility.

CMU/SEI-92-TR-1 9

3.2 Customization
The areas of customization for the generator have been localized to two packages. Each of
these packages will need to be examined. The generator may be customized with respect to
task names, priorities, etc.:

GeneratorStructure. The following can be found in the GeneratorStructure

package (gen st s. ada).

User Customization Section Begins

- Customizaton for Constraints on Generator

Max_NumberOfTests: constant Positive := 30;
MaxTaskEvents constant Positive := 5;
Max_ServerEntries constant Positive := 5;

type Task._Names Is (CI, C2, C3, C4, C5, SI, S2, S3, S4, S5);
type EntryNameTypes Is (El, E2, E3, E4, E5);

- Customization for BuildHarnessConstants

type Byte Is range n.. 255; - Type Byte Needed
for Byte'Size use 8;

EventL.oggePriority constant Byte := 60; - Highest Priority
ServerPriority constant Byte := 32; - Server Priority
MainPriority constant Byte := 1; - Lowest Priority
TesLDonePrionty : constant Byte := 59; - Next Highest Priority
Settlingime : constant Float := 1.0; - Startup time
Interactive Trace : constant Boolean := False; - Debug Off

- Priorities PI-P10 should be higher than the ServerPrioriy.
type PriorityType Is (P1, - Low Prioriy

P2, P3, P4, P5, P6, P7, PS, P9,
P10); - High Priority

for PriorityType use (P1 => 33, P2 => 34,
P3 => 37, - Actual values can be noncontiguous
P4 ->38, P5 => 41, P6 =>43, P7 =>46, P8 =>47, P9 =>48, P1O=>49);

for PriorityType'Size use 8;
User Customization Section Ends

TestCharacteristics (tstchb.ada). Customization is required only if the
user needs to change the suite of logical tests. This involves modifying the
parameters that describe the test suite to be generated. Modifying the
TestCharacteristics package is easier than creating this package anew. The
specification for test BI_05 is given in Appendix C on page 87; the diagram
describing this test case is found in Appendix A on page 27.

10 CMU/SEI-92-TR-1

4 Test Harness and Test Coding Style

The test harness is a package of subprograms that support the execution of test cases. In par-
ticular, various setup procedures are provided together with procedures for consuming time
and for logging events that occur during execution. An automated examination of the event log
determines whether a given test has been passed.

Clients and servers comprising a test are assumed to be coded in certain patterns of calls to
the test harness. The next section discusses the coding style required for servers. Section 4.2
discusses various services provided by the test harness.

4.1 Server Coding Style
The test case generator automatically produces server tasks written in a style that allows serv-
ers to be implemented efficiently as critical regions protected by a semaphore [Borger 89].
These restrictions are:

1. All accept statements must be contained in a single select statement that is
the only statement in the body of an endless loop.

2. A server task is not assigned a priority using the pragma PRIORITY. Since
Ada's rules do not specify any particular priority or scheduling policy for tasks
that do not have a defined priority, the runtime system can allow these servers
to execute in accordance with the basic inheritance and priority ceiling
protocol rules [Sha 90).

The sample Ada code segment shown in Figure 2 Illustrates the server coding style used in
the tests. The example server task (SI) has a single select statement with two accept alterna-
tives (El and E2) and a terminate alternative. The terminate alternative will be selected when
the test is finished.

4.2 Test Harness Services
The event logger captures the activities of a test case execution. As the test harness executes,
calls to the logger capture the identity of the active task (a client or a server), the identity of the
calling client task (when an event is logged within a server), the current time, and the nature
of the event. A printout of logged events is usually provided after the test case has finished,
but printouts can be provided interactively. Reporting events as they occur can cause unin-
tended test behavior because of the time taken to print out the information, but interactive re-
porting can be useful when debugging a test case.

CMU/SEI-92-TR-1 11

task body Si Task Is
ExecTime_1: constant Duration := 1.0;
Exec_Time_2: constant Duration:= 3.0;

begin

- Get my id

accept GeLid (Task Id : out Vendor_Specifios.Taskhld) do
Task_ld:= Vendor._Specifics.Get_Task;

end Getjd;

- Endess loop servicing clients

loop
select

accept El (Callerid : In Task.LdType) do

- Server Execution

LogEvent(S2, Callerld, ServerExec_- Begins);
Harness_.SupportSpend_Time(ExecTimeol);
LogEvent(S2, CallerId, ServerExec..Ends);

end El;
or

accept E2 (Callerld : In TaskldType) do

- Server Execution

LogEvent(S2, CallerId, Server._Exec.Begins);
Hamess..SupportSpend_Time(ExecTne._2);
Log.Event(S2, Callerld, Server_ExecEnds);

end E2;
or

terminate; - when test is finished
end alect;

end loop;
end SITask;

Figure 2 Server Coding Style

4.2.1 Events to be Logged
The events that can be logged are defined by the type TaskExecPhase. Currently the
events that can be logged are the following:

" ClientExecBegins - Beginning client execution. Followed by a call to

SpendTime.

" ClientExecEnds - Ending client execution.

* TaskSuspensionBegins - Beginning task suspension. Followed by a call
to Suspend-Task.

" TaskSuspensionEnds - Ending task suspension.

" Server_- CalLBegins - Beginning a call to a server. Followed by the ac~ual
server call. Both clients and servers can call other servers.

" ServerCallEnds- Ending a server call.

12 CMU/SEI-92-TR-1

" ServerExecBegins - Beginning server execution. Followed by a call to

Spend-Time.

" ServerExecEnds - Ending server execution.

Note: All of the Begins and Ends above are paired to represent actions that can be repeated
more than once for a given client or server. A client typically performs more than one action.

4.2.2 ClIent/Server Event Patterns
A client may contain any combination of the following patterns of event logging calls and calls
to harness support procedures. The LogEvent call takes three parameters: the first is the
identifier of the task containing the call; the second is used in servers and identifies the calling
client or server task; the third identifies the event that is to be logged.

" Execution time spent in client (C1).

LogEvent(Cl, None, ClientExec...Begins);
HarnessSupport.SpendTime(ExecTime.1);
Log.Event(Ci, None, ClientExecEnds);

" Call by a client (Cl) to a server (Si).

LogEvent(Cl, Si, Server.CalLBegins);
Server._Si_Package.Sl_Task.E1(Ci);
LogEvent(C1, S1, ServerCall Ends);

A server may contain any combination of the following patterns:

" Execution time consumed by a server (S) on behalf of a caller.

LogEvent(S1, Callerld, ServerExecBegins);
Hamess.Support.SpendTime(ExecTime 1);
LogEvent(S1, Caller ld, ServerExecEnds);

" Call by a server (S 1) to another server (S2).

LogEvent(S1, $2, ServerCalLBegins);
ServerS2_Package.S2_Task.E1 (Si);
LogEvent(S1, S2, ServerCall-Ends);

" Suspension of a server task (Si) that is executing on behalf of some caller.

LogEvent(S1, Caller Id, TaskSuspensionBegins);
HamessSupport.SuspendTask(SuspensionTime 1);
LogEvent(S1, Caller Id, TaskSuspension_Ends);

CMU/SEI-92-TR-1 13

4.2.3 Event Timeline Example
The output from the test harness is a log of events that should be compared with expected test
results (see Appendix B). These events indicate the order of execution of clients and servers
during the execution of a test case. The expected sequence of events is derived from the test
case diagrams given in Appendix A. The example given in Figure 3 shows the expected output
for test case "BI_05" (page 36).

[Task: C3 Begins Execution at t = 1]
[Task: C3 Ends Execution at t = 2]
[Task: C3 Calls server: S1 at t = 2]
[Task: S1 Begins Execution on behalf of: C3 at t - 2]
[Task: S1 Ends Execution on behalf of: C3 at t = 4]
[Task: Si Calls server: S2 at t = 4]
[Task: S2 Begins Execution on behalf of: S1 at t = 4]
[Task: C2 Begins Execution at t = 5]
[Task: C1 Begins Execution at t = 6]
[Task: CI Ends Execution at t = 7]
[Task: C1 Calls server: S1 at t = 7]
[Task: S2 Ends Execution on behalf of: S1 at t = 8]
[Task: Si Begins Execution on behalf of: C3 at t = 8]
[Task: Si Ends Execution on behalf of: C3 at t - 10]
[Task: SI Begins Execution on behalf of: C1 at t = 10]
[Task: Si Ends Execution on behalf of: C1 at t = 11]
[Task: CI Begins Execution at t = 11]
[Task: Cl Ends Execution at t = 12]
[Task: C2 Ends Execution at t = 13]
[Task: C3 Begins Execution at t = 13]
[Task: C3 Ends Execution at t = 14]

Test Complete

Figure 3 Example Timeline

4.2.4 Additional Software Support
The test harness contains additional software that is used to calibrate a test case, start and
stop the test case, activate the event logger, and print the timeline of events captured by the
event logger. The command sequence for the main procedure for running tests such as BI_05
is shown below:

HarnessSupport.CalibrateSpendTime; -- Calibration
HamessEventLog._Manager.lnitialize(StartTime); -- Initialize Logger
bi_05_TestHamess.StartRun(Start Time); -- Start Clients
bi 05 TestHarness.TestDone.Complete; -- Wait for Clients
HarnessEventLog_Manager.PrintTimeLines; -- Print Time Line
HarnessEventLogManager.Quit; -- Stop Logger

14 CMU/SEI-92-TR-1

The complete code for test case BI_05 is found in Appendix D.

4.3 Customization
The test-harness may be customized in the following areas:

VendorSpecifics. The following can be found in the VendorSpecifics
package. It should not be necessary to change the VendorSpecifics
package specification except possibly for its types and subtypes. The body
of this package will need to be modified to support an individual vendor. The
following code shows the TeleSoft 3.23 TeleAda-Exec vendor-specific
package, vendor. tel:

with System;
with Calendar;
with AdaTaskingExtensions;
package VendorSpecifics Is

subtype Task..d Is AdaTaskingExtensions.Taskj.d;

function GetTask return Taskld renames
Ada TaskingExtensions.CurrentTask;

procedure ChangePdority (OfTask: Ada TaskingExtnsions.Taskld;
New_Priority : System.Priority);

procedure Set.Pnonty_Ceiling (OLTask: AdaITaskingExtensions.Taskld;
NewPriority : System.Priorty);

function GetPriority_Ceiling (Of_Task: AdaTaskingExtensions.Task ld)
return System.Priority renames AdaTasking_Extensins.Get_Pority;

procedure Delay_Until(Wake _Up ime: In Calendar.Time);
end VendorSpecifics;

- Package Body

with AdaTaskingExtensions;
package' dy VendorSpeifics is

procedure Change_Pdority (OLTask : AdaTasking_Extensions.Taskld;
New_Priority : System. Priority) Is

Priority: AdaTaskingExtensions.TaskPriority;
begin

Priority : AdaTaskingExtensions.Change Priority (OfTask, NewPriority);
end Change.Pnonty;

procedure SetPriorityCeiling (Of_Task : AdaITasidngExtensions.Taskld;
New Priority : System.Priority) Is

Priority : AdaTaskingExtensions.Task Priority;
begin

Priority :- AdaTaskinLExtensions.ChangePriority (OLTask, NewPriority);
end Set.Priority_Ceiling;

rocedure DelayUntil(Wake Up ime: In Calendar.Time) Is
Now : Calendar.DayDuman := Calendar.Soconds(Calendar.Clock);

begin
delay(Calendar.Seconds(WakeUpfime) - Now);

end DelayUntil;
end VendorSpecifics;

CMU/SEI-92-TR-1 15

" Modifications to HarnessConstants (hconst. ada) should not be needed if
the generator creates this package.

" Modifications to lOPkgs package (iopkgs. ada) should be needed only if
this package does not compile. This would indicate different I/0 compiler
support.

16 CMUISEI-92-TR-1

5 Comparator
The comparator compares the actual event sequences of a test case execution with the ex-
pected sequence of events. For a test to pass, the actual and expected sequences of events
must match line for line, excluding the time stamp. The time stamp is not considered because
the overhead of the event logger and other execution times that are not accounted for will
cause the time to vary slightly. At the completion of a test, the last event's time stamp is
checked for a drift of no more than :5%. If the drift was more than ±5%, a warning is given to
check the execution times.
The input to the comparator is the data in the file compare. dat. Entries in this file are a suc-
cession of lines having the following format:

* the keyword Compare
* the location of the expected output
" the location of the actual output
* a descriptive comment

and a blank line. Copying and modifying this file is easier than creating it anew. An example
file is shown in Figure 4.

Data File for Comparator
Compare
.JExpected/ex_01 .out
.JActual/ex_01 .out
ex_01

Compare
.JExpectedlex_02.out
.JActual/ex_02.out
ex_02

Compare
.JExpected/ex_03.out
JActual/ex_03.out

ex_03

Compare
.JExpected/ex_04.out
.JActual/ex_04.out
ex_04

Compare
.JExpected/ex_05.Oout
.JActual/ex_05.out
ex_05

Compare
.JExpected/ex_06.out
.JActual/ex_06.out
ex_06

Figure 4 Comparator Data File Example

CMU/SEI-92-TR-1 17

5.1 Comparator Output and Error Messages

Figure 5 shows example output from the comparator.

For ex_01, the test case passed. This means that the expected and the actual events matched
and the completion times differed by less than ±5%.

For ex_02, the test case passed with a warning. This means that the expected and actual
events matched but the completion times differed by more than ±5%. The completion times for
the expected and actual results are printed.

For ex_03, the test case failed because the expected and actual events did not match. The
place of the mismatch is shown by looking at the two lines (expected event and the actual
event).

Test Suite

Test: ex_01 => Passed

Test: ex_02 -> Passed {check times)
** Expectedime = 10, Actuallime = 9.100

Test: ex_03 => FAILED
[Task: S1 Begins Execution on behalf of: C1 at t = 7]
[Task: C1 Ends Call with server: S1 at t -

Test: ex_04 -> FAILED *° ERROR -- DataError unexpected
[Task: S2 Ends Suspension on behalf of: C2 at t = 6]
[Task: C1 Ends Call with server: S1 at t =

Test: ex_05 => FAILED ** ERROR -- Name_Error unexpected"
** File - .Jtest-suite/Expected/ex_05.Oout, could not be Opened"

Test: ex_06 -> FAILED ** ERROR -- End-Of-File unexpected"
[Task: C3 Ends Execution at t - 8]
[Task: C3 Begins Execution at t =

Figure 5 Comparator Output Example

18 CMU/SEI-92-TR-1

For ex_04, the test case failed with an unexpected error indication. The expected and actual
events did not match because DataError was raised. The expected event and the actual
event are printed.

For ex_05, the results file could not be opened. This file name is printed following the erri,
message.

For ex_06, the end of file was encountered unexpectedly. The events before the unexpected
end-of-file occurred are printed.

5.2 Customization
The comparator should not require customization. B, it the file compare. dat should change
as the suite of tests changes.

CMU/SEI-92-TR-1 19

20 CMUISEI-92-TR-1

6 User's Guide

6.1 Directory Release Structure
The directory release structure for the software that accompanies this report is shown in
Figure 6.

<Release Directory>
document

Postscript of this document

events
psO1 .out (thru) PSL_03.out
bi_01 .out (thru) bi 1O.out
pq_.01 .out (thru) pc_I 3.out

tests
harness

evlogb.ada
evlogs.ada
hsuppb.ada
hsupps.ada
iopkgs.ada
vendor.{aly I tel I trt I vdx)

logicals
ps..1 .ada (thru) Ps_03.ada
bi_01.-ada (thru) bi lIO.ada
pc-_l.ada (thru) pc_13.ada

tools
compare

compare.ada
comrpare.dat

generate
genera.ada
gensep.ada
genstb.ada
gensts.ada
tstchb.ada
tstchs.ada

Figure 6 Directory Release Structure

CMU/SEI-92-TR-1 21

6.2 Testing Process
This section steps through the use of the test case generator, the running of individual test cas-
es, and the running of the comparator. The test case generator allows rapid development of a
test case. The generator takes an Ada description of the test cases to be generated and pro-
duces appropriate packages. These packages and the test harness are then compiled togeth-
er to produce an executable test program. The results of the test execution are then compared
with the expected results. The test case generator and the comparator were designed to be
run on the host machine, while the test harness was designed to be run on the target machine
(which could be the host).

6.2.1 Test Generator Usage
Step 1: Generate the tests. The first step in the testing process is to produce the test files.
The tests described in this report have already been created and are supplied with the soft-
ware release. If you do not intend to make any major modifications or enhancements to these
tests, you will not need to use the test generator tool, and you can skip to Step 2.

The input to the generator is a file containing the package TestCharacteristics
(tstchb. ada). This package contains a description of the test cases to be generated (see
Appendix C for an example). This file can be modified to produce new or different tests. The
steps to follow in compiling the generator tool and specifying the tests it will produce are as
follows:

1. Locate the directory <ReleaseDirectory>/tools/generate. This di-
rectory contains all of the generator source files.

2. The source files tstchb.ada and gensts.ada should be modified
according to the customization suggestions contained in Section 3.2 on page
10.

3. The generator should be compiled using a HOST Ada compilation system
(the executable will run on the development machine). The main unit is
generate, and the compilation order for these packages is shown in Figure
7.

4. Once the generator has been compiled and linked, running it will produce the
harness_constants package and the individual test files (see Appendix D
on page 91 for an example of a test).

6.2.2 Test Harness Usage
Step 2: Compile the tests and the test harness. The test harness is compiled along with the
generated logical test files to produce the executable load modules that represent each test
case. The tests may be ones created using the generator, or they may be the versions provid-
ed in the tests/logicals directory. To compile the test harness, follow these steps:

22 CMU/SEI-92-TR-1

File Name UnitLs)

gensts.ada GENERATOR_STRUCTURE

genstb.ada GENERATOR_STRUCTURE <body>

tstchs.ada TESTCHARACTERISTICS

tstchb.ada TESTCHARACTERISTICS <body>

genera.ada GENERATE <body>

gensep.ada GENERATE.BUILDBODIES <body>

GENERATE.BUILDHARNESSCONSTANTS <body>

GENERATE.BUILDMAIN <body>

GENERATE.BUILDSPECS <body>

GENERATE.CALCCEILINGS <body>

GENERATE.MAKESTRING <body>

Figure 7 Compilation Order for Generator Tool

1. Modify the test harness files located in tests/harness (only if they cannot
otherwise be compiled).

iopkgs .ada

hsuppb ada

vendor. tel (or other vendor-specific package)

2. Modify the hconst.ada package located in <ReleaseDirectory>/
tests/logicals if it does not compile.

3. Compile the test harness and the harness constants package using the
TARGET Ada compiler. The compilation order is shown in Figure 8.

4. Compile and link the individual logical tests. All the unit names for the test
cases are unique, so one library can contain the entire set of tests. For the
test cases presented in this report, the file name reflects the main unit name,
so an example compile and link would be the following:

compile bi_05.ada

link bi_05

5. Run the executable load module for each test, directing or capturing the
output to a file, e.g., for a target running Unix:

bi_05 > bi 05.out

CMU/SEI-92-TR-1 23

File Name Unitfs)

hconst ada HARNESSCONSTANTS

iopkgs.ada 10_PKGS

vendor.??? VENDORSPECIFICS

VENDORSPECIFICS <body>

evlogs .ada HARNESSEVENTLOGMANAGER

evlogb .ada HARNESSEVENTLOGMANAGER <body>

hsupps .ada HARNESSSUPPORT

hsuppb .ada HARNESSSUPPORT <body

Note: the above ??? in vendor.??? is specific to the tested compiler (tel, vdx, aly, ..)

Figure 8 Compilation Order for the Test Harness Files

6.2.3 Comparator Usage
Step 3: Check the test output. The input to the comparator is the file compare. dat. The
format to be used for this file is described on page 17. The steps for creating the comparator
program are as follows:

1. Compile <ReleaseDirectory>/tools/compare/compare.ada and

link the main unit compare, using a HOST compilation system.

2. Modify compare. dat (to reflect the test case output to be checked).

3. Run compare.

24 CMU/SEI-92-TR-1

References
[Altman 87] Altman, Neal. Factors Causing Unexpected Variations in Ada Benchmarks

(CMU/SEI-87-TR-22, DTIC: ADA1 87231). Pittsburgh, PA: Software Engineer-
ing Institute, Carnegie Mellon University, October 1987.

[Borger 89] Borger, Mark W.; & Rajkumar, Ragunathan. Implementing Priority Inheritance
Algorithms in an Ada Runtime System (CMU/SEI-89-TR-15, DTIC:
ADA209607). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, April 1989.

[Sha 90] Sha, L.; & Goodenough, J. B. "Real-Time Scheduling Theory and Ada." IEEE
Computer 23, 4 (April 1990):53-62.

[Sprunt 89] Sprunt, B.; & Sha, L. Scheduling Sporadic and Aperiodic Events in a Hard Real-
Time System (CMU/SEI-89-TR-1 1, DTIC: ADA211344). Pittsburgh, PA: Soft-
ware Engineering Institute, Carnegie Mellon University, April 1989.

CMU/SEI-92-TR-1 25

26 CMUISEI-92-TR-1

Appendix A Logical Test Suite Diagrams
This Appendix contains diagrams describing the logical tests. The diagrams show the cli-
ent and server tasks, their calling relationships, and the expected sequence of events. An
explanatory diagram showing the graphic conventions appears on the next page. The rest
of the Appendix contains diagrams for the tests described briefly in Section 2.

For the priority ceiling protocol tests, each diagram is annotated with a comment explaining
any difference in test behavior under the two emulation methods: the method in which
servers are executed non-preemptively (the non-preemptible-server emulation methoo),
and the method in which servers are executed at their ceiling priority (the server-ceiling
emulation method). If the difference in test behavior is the same under both emulation
methods, we say so explicitly. For example, in Figure A-1 7, the change in test behavior is
the same under both emulation methods, so we use the phrase "under either emulation
method". In Figure A-21, the test behavior only changes when the non-preemptible-server
emulation method is used, so the comment only mentions the change in this case.

CMU/SEI-92-TR-1 27

-C-

UU

N004>4A..

............ .Z)a

................................- -0 i E
a.V'

6R.-VI In AN NI (4

u-

CAZ

u- N
00)

C-44

z u

Figue A- ExmpleTestCas
28) 0M/E-2T

U U

CC)

'-4

N

oG
- ID

'8.8

N UUUU

U U

Figure A-2 PSO01: High-Priority Clients Preempt

CMU/SEI-92-TR-1 29

N cf)

U U U

'-4

V-4

-40

1-

- C

0
00 Z ~UU

C44J
'U 'U

'0

U U U

Figure~ A-US0:Uo-rort lets()Dn' rep
30 CM /SEI-2-TR-

I-
I-

F-4
-0

Z

- 0ii
04222

F-O

00 UUUU
Nx

2! V LLcAC0%0 CA

A~ V~88888
0 U U U_ UUUUUUU

-P-

U U 13 U U

Figure A-4 PS-03: Low-Priority Clients (4) Don't Preempt

CMU/SEI-92-TR-1 31

LO)

2 1.4

UU U U U

N Lf 'ON OOU

91 '-4 >4

t 1

M' U

0%. 0 UI 0U
.0 0-

U U U

CM U/EI9 T-

U()

00 TU-

0 0

11111 ZUUUU
U U -4 .-

'-wg~ o z
0Lf

U) - >oN

0)4. V- f ' r

E -U'' *) 11

U U)

U~ U

Fiur A-6 Bi0:SrvrPirtyi.asd nSae
CM V/-92T 332

C'4

I--

10

'-l

IN

*00

0%0

U >
U~ w

U 8~I. 8~U1~ C- , N -4N

4. 1-0 4.

1.U U

Figure A-7 Bi_03: Inheritance Is Transitive

34 CMU/SEI-92-TR-1

040

U

N cU

C4 br

'-0 C4

(AA ti~

IV 0

e.4e4 .,4 T- N

NO Q N WUc,

U

Figure A-8 Bi_04: Transitive Inheritance with Preemption

CMU/SEI-92-TR-1 35

04-
cn-

N

C4 CF) U UU
U U U 2

8;4 I " :: 4:::: e
__________________ -h --- UU

00

C'4

88U8

N 40 -s :g~

I I I C-4 04 UI

(A U

9 0.

C1 CJ)

U

Figre -BI-:Tastv Inheitnc wihSre t ihPirt

36N CMU/EI'9-TR-

>

C'4

z

N 0

00)

u-

C, N) C4

u 0

CMU/SI-92-R-1 -

>1

NN

z I-

C44N

E. E.

N r- C 4 N
U U nU 0

U U

N 00 V ac1
-. 4-a 4- -

.V4

--

UU

U4 '4 ,40

C4

38~~~ CM/EC2T-

in

UU

N

-

Go(
UU

EU LU8 2:Q

N -tU~UU

U U

Figure ~ ~ ~ ~ ~ E A-2B-8 meit-Rnevu ihSre

CMU/SI-92-R-1 3

I-

0

UN

II

.4-
'-

cn 00

'I.-

U U U
FgrA- BI09 Cope xape#

40~4 CM/EI9-T-

'-424

c:I ~U 6UUUU

-. a.)7

8 88 8 8 8 88 8 8

-*~~ ~ N M4 % M~o %~~

C4 C,4

o-

14.

~C-4

4 S 55
RL , Q. eo Mt

C _ en 9Lf t i N l

Figure A-14 BI_09 Events

CMU/SEI-92-TR-1 41

In ,W

U 04

T I

01 0

U 04

U LO C

0

UU~ N

LOn

1wI

-N
U 0 C.

Fiur A-1 B10 CoplxExmle#

42 CM/SEI-2-TR-

.d

(AMN

UZ

.0 ~ 0

or

*44

o o

o rdoa LL .1,88 91

N g ,

(D N ?)V)

"IIu2 1 j lrl1 N' a ,?(%14 T-

AG if 1 1 11 1 1 1

DC

FIgure A-1l6 BI_10 Events

CMU/SEI-92-TR-1 4

x

CI4

5o

Xy

338

U U

-OJ

Cf))

000

Lt;0

CC

UU

Figure A-17 PC-01: Simple Ceiling Blocking

14 CMU/SEI-92-TR-1

CIC4
44-

U~ U)C

4- NO

1 4

-

C-4

x- U) C,4 u
0

09 LONV
0~~~~G 9z 111111

Figure A-1 8 PC_02: Deadlock Avoidance (2 tasks)

CM U/SEI-92-TR-1 45

Lrcr

~0J4 E
Pj W

8 8 8 0 8

N 00 Ch . .. 0 g
11 liii1 11 11 11

-&

C.c;

U U
cc U) U 40
to N4

(n %.

S0 ~0

2~CI)CIO

UU U U.

U~~, M ('4 .qJ4 ID~~~,- W

46 CMU/SEIY92-TR-1

U 1

2N

'8 P

w0

W.

- U)

.~ u~d U~C
U

U 0) U)~~~~

viu~88
NUNS~~f

esJ~~~~
8~ 0 0nUccrcU

N U 00u mmu

U N CN

UU

- Cq

eq VCJ- b N4 (

.... n

00)N)0

.

NN W~

8 8
FiueA2 C04 Blce atMs nc-NsedCls

CM U/SE I-92-TR-1 4

N

UU

UU

- I &I

Y-4 C, C

U U,

N1 a =O 5 0 -

> X 0 0

it U) 4N
U~~Eu~ $1

V4U U1U1U1U1(A1U

U U

Figuae A-21 PC_05: Servers Don't Execute Above Ceiling Priority

48 CMU/SEI-92-TR-1

U m

4 .0

LA U Ui

CI4 U -

&I U& 0
a IoO -4 T-

r 11J 11 1
jA .11, JN .~

ww

-4 '.4

-~ U
>0 00

C,) - (U Iv
0 4S 0

fu fu

00

C4 en do

U~ U UU wu'

Figure A-22 PC_06: Correct Task Resumes

CMU/SEI-92-TR-1 49

, .u .

R-

C4n
U UQ

0 a) V I t ,

4 " > , J.'.-

.- I-i
C4 N U0

"4 -4. ,

SUU U
-U

r)

5- M

- :as

- U

C14 C14 C-48

%4 m Uf

.~ U U

FiueA2 C0:Deae ihPirt Sre os' lc
50 CMU/SI-92-TR-

0

A G

4)
u~

C-

c..I~ 04 04 04.*~*..

o0 w
z 5 ..4

NC4~- -0 M CDY-

7-4

0 C

ONNI

u ism
Fur A2 24 PCODalc v~ac 3Tss

CM~~ >/E-2- 51

U)N

U%~4

U8 U U w V

'-00

04 9

'-0 V- ""a

- U)

un. 104U

.... CF) -4...

'4.

4'4 4 ' '4 4:

M N -

1.4 U

Figure A-25 PC-09: Deadlock Avoidance (3 Tasks)

52 CMU/SEI-92-TR-1

LU U

UU
0 0

0 h

183 0 -

10 0 8
C14 IN

;
in in in

t140 o Uc~~L
U- - - .

'-4

UU

U ..n.s..........c.. .. toU

cn 0 0

0 0

LO to Ca .4 1

M 75.

U UU

FigreA-6 C-10:Celig Bocin WrksWhn erer s elye
CMU/SI-92-R-1E5

~4 Ln
N UN

II

'0

04-

1-4

cn W-4

r-4

It
00

U IN

N L O

U U U UU

Figure A-27 PC_11: Complex Example #1

54 CMUISEI-92-TR-1

0

ob

r4 -

(UU
4V-

164 - C*'C

:g 2 :p= ,

- ~iU' U i

o U) U) 0 0

>' >'4 ' '

FiueN2 C1:Eet

CM /SI-(-R- 55

N

C14.

N U

.-C

I'.

0 C 00

U C4-

000

-,4g :g-- Nn s.

IA

.4.4

-'44
I--

U 00
FiueA2 C1 CmlxEape#

56 CM/SEI-2-TR-

~sn (n b3sn

U
> >~u > :3

N 0 WjZ

U U U'~ EnoU(

a! 0

o bt

8S 8~ 8 88w8 8 8 888 8
(I " N lNM& I t't,4L UU O

hi IIHH w W m11111
4' 4'4'4'4' 4'4 4 4 4 4 4 4 u

c-i
U -J

0~. lb

wOWN MJCl

-g A 4 :5

IS U

Ui U UUCIUUUC

-4 Lr) C7 ,- '

Figure A-30 PC_1 2: Events

CMU/SEI-92-TR-1 57

U) '-4

0

N

U) N)

U-10I

U)U

>NN

UU

.00

$4 "4 *4

P-4 U U'U

Figue A31 P-12 Evets hen ervrs Ae Nn-Prempibl

CM/EI9-T-

M

Cf)

~0
-- N

U Mg

Uo

U U

Cf)o

4) -Ui mUn f

UU

N

- C) Ur
U (A o

Fiur A-3 PC1:Eet We evr Eeuea eiigPirt

UM/E-2T- 59a.

V-4

J N

IU,

U) UU r.UU U

0)0

8 ~8 8 88 8 88

0 10
O, U U

LO %6.

U 'U

r'- T

U~~ f '

00 U4

.4-

Lr.

U0 UU U MU U

..,

U M' c r) ' 0N 0

0
w U U U U U

Figure A-33 PC_13: Priority of Ceiling-Blocked Task Is Inherited

CMUISEI-92-TR-1

Appendix B Logical Test Suite Expected Events

[Task: C2 Begins execution at t = 1]

[Task: C1 Begins execution at t = 2]

[Task: Ci Ends execution at t = 5]

[Task: C2 Ends execution at t = 7]
Test Complete *

Figure 3-1 Expected Events for PS_01

CMU/SEI-92-TR-1 61

[Task: Cl Begins execution at t = 1]
[Task: Cl Ends execution at t = 4]
[Task: C2 Begins execution at t = 4]
[Task: C2 Ends execution at t = 5]
[Task: C3 Begins execution at t = 5]
[Task: C3 Ends execution at t = 6]

Test Complete

Figure B-2 Expected Events for PS_02

62 CMU/SEI-92-TR- 1

[Task: C1 Begins execution at t = 1]
[Task: C1 Ends execution at t = 4]
[Task: C2 Begins execution at t = 4]
[Task: C2 Ends execution at t = 5]
[Task: C3 Begins execution at t = 5]
[Task: C3 Ends execution at t = 6]
[Task: C4 Begins execution at t = 6]
[Task: C4 Ends execution at t = 7]
[Task: C5 Begins execution at t = 7]
[Task: C5 Ends execution at t = 8]

Test Complete

Figure B-3 Expected Events for PS_03

CMU/SEI-92-TR-1 63

[Task: C3 Calls server: S1 at t = 1]
[Task: S1 Begins execution on behalf of: C3 at t - 1]
[Task: C1 Begins execution at t = 2]
[Task: Ci Ends execution at t = 3]
[Task: C1 Calls server: S1 at t = 3]
[Task: S1 Ends execution on behalf of: C3 at t = 5]
[Task: S1 Begins execution on behalf of: C1 at t = 5]
Task: S1 Ends execution on behalf of: C1 at t = 6]
[Task: C1 Begins execution at t = 6]
[Task: C1 Ends execution at t = 7]
[Task: C2 Begins execution at t = 7]
[Task: C2 Ends execution at t = 8]
[Task: C3 Begins execution at t = 8]
[Task: C3 Ends execution at t = 9]

Test Complete

Figure B-4 Expected Events for BI_01

64 CMU/SEI-92-TR-1

[Task: C5 Calls server: Si at t = 1]
[Task: S Begins execution on behalf of: C5 at t = 1]
[Task: C4 Begins execution at t = 2]
[Task: C3 Begins execution at t = 3]
[Task: C3 Ends execution at t = 4]
[Task: C3 Calls server: S at t = 4]
[Task: C2 Begins execution at t = 5]
[Task: Cl Begins execution at t = 6]
[Task: CI Ends execution at t = 7]
[Task: Cl Calls server: S at t = 7]
[Task: S Ends execution on behalf of: C5 at t = 8]
[Task: S Begins execution on behalf of: Cl at t = 8]
[Task: S Ends execution on behalf of: Cl at t = 9]
[Task: Cl Begins execution at t = 9]
[Task: Cl Ends execution at t = 10]
[Task: C2 Ends execution at t = 11]
[Task: S Begins execution on behalf of: C3 at t = 11]
[Task: S Ends execution on behalf of: C3 at t = 12]
[Task: C3 Begins execution at t = 12]
[Task: C3 Ends execution at t = 13]
[Task: C4 Ends execution at t = 14
[Task: C5 Begins execution at t = 14]
[Task: C5 Ends execution at t = 15]
* Test Complete

Figure B-5 Expected Events for B102

CMU/SEI-92-TR-1 65

[Task: C1 Calls server: S1 at t= 1]
[Task: S1 Begins execution on behalf of: C1 at t = 1]
[Task: S1 Ends execution on behalf of: C1 at t = 3]
[Task: S1 Calls server: S2 at t = 3]
[Task: S2 Begins execution on behalf of: S1 at t = 3]
[Task: S2 Ends execution on behalf of: S1 at t = 5]
[Task: S1 Begins execution on behalf of: C1 at t = 5]
[Task: S1 Ends execution on behalf of: C1 at t = 7]
[Task: C1 Begins execution at t = 7]
[Task: C1 Ends execution at t = 8]
[Task: C2 Begins execution at t = 8]
[Task: C2 Ends execution at t = 9]

Test Complete ******************

Figure B-6 Expected Events for BI_03

66 CMU/SEI-92-TR-1

[Task: C2 Calls server: S1 at t = 1]
[Task: S1 Begins execution on behalf of: C2 at t = 1]
[Task: S1 Ends execution on behalf of: C2 at t = 4]
[Task: S1 Calls server: S2 at t = 4]
[Task: S2 Begins execution on behalf of: S1 at t = 4]
[Task: C1 Begins execution at t = 6]
[Task: C1 Ends execution at t = 7]
[Task: S2 Ends execution on behalf of: S1 at t = 8]
[Task: S1 Begins execution on behalf of: C2 at t = 8]
[Task: S1 Ends execution on behalf of: C2 at t = 11]
[Task: C2 Begins execution at t = 11]
[Task: C2 Ends execution at t = 12]
[Task: C3 Begins execution at t = 12]
[Task: C3 Ends execution at t = 13]

Test Complete

Figure B-7 Expected Events for BI_04

CMU/SEI-92-TR-1 67

[Task: 3 Begins execution at t = 1]
(Task: 03 Ends execution at t = 2]
[Task: C3 Calls server: S1 at t = 2]
[Task: S1 Begins execution on behalf of: C3 at t = 2]
[Task: S1 Ends execution on behalf of: C3 at t = 4]
[Task: S1 Calls server: S2 at t = 4]
[Task: S2 Begins execution on behalf of: S1 at t = 4]
[Task: C2 Begins execution at t = 5]
[Task: C1 Begins execution at t = 6]
[Task: C1 Ends execution at t = 7]
[Task: C1 Calls server: S1 at t = 7]
[Task: S2 Ends execution on behalf of: S1 at t = 8]
[Task: Si Begins execution on behalf of: C3 at t = 8]
(Task: S1 Ends execution on behalf of: C3 at t = 10]
[Task: S1 Begins execution on behalf of: C1 at t = 10]
[Task: S1 Ends execution on behalf of: C1 at t = 11]
[Task: C1 Begins execution at t = 11]
[Task: C1 Ends execution at t = 12]
[Task: C2 Ends execution at t = 13]
[Task: C3 Begins execution at t = 13]
[Task: C3 Ends execution at t = 14]

Test Complete

Figure B-8 Expected Events for BI_05

68 CMU/SEI-92-TR-1

[Task: C2 Begins execution at t = 1]
[Task: C1 Begins execution at t = 2]
[Task: C1 Ends execution at t = 3]
[Task: C1 Calls server: S1 at t = 3]
[Task: S1 Begins execution on behalf of: C1 at t = 3]
[Task: S1 Ends execution on behalf of: C1 at t = 4]
[Task: S1 Begins Suspension on behalf of: C1 at t = 4]
[Task: C2 Ends execution at t = 5]
[Task: S1 Ends Suspension on behalf of: C1 at t = 6]
[Task: S1 Begins execution on behalf of: C1 at t = 6]
[Task: S1 Ends execution on behalf of: C1 at t = 7]
[Task: C1 Begins execution at t = 7]
[Task: C1 Ends execution at t = 8]

Test Complete

Figure B-9 Expected Events for BI_06

CMU/SEI-92-TR-1 69

[Task: C1 Begins execution at t = 1]
[Task: C1 Ends execution at t = 2]
[Task: C1 Calls server: S1 at t = 2]
[Task: S1 Begins execution on behalf of: C1 at t = 2]
[Task: S1 Ends execution on behalf of: C1 at t = 3]
[Task: S1 Begins Suspension on behalf of: C1 at t = 3]
[Task: C2 Begins execution at t = 3]
[Task: C2 Ends execution at t = 4]
[Task: C2 Calls server: S2 at t = 4]
[Task: S2 Begins execution on behalf of: C2 at t = 4]
[Task: S1 Ends Suspension on behalf of: C1 at t = 5]
[Task: S1 Begins execution on behalf of: C1 at t = 5]
[Task: S1 Ends execution on behalf of: C1 at t = 6]
Task: C1 Begins execution at t = 6]
[Task: C1 Ends execution at t = 7]
[Task: S2 Ends execution on behalf of: C2 at t = 8]
[Task: C2 Begins execution at t = 8]
[Task: C2 Ends execution at t = 9]

Test Complete

Figure B-I 0 Expected Events for BI_07

70 CMU/SEI-92-TR-1

[Task: C1 Begins execution at t = 1]
[Task: C1 Ends execution at t = 2]
[Task: C1 Calls server: S1 at t = 2]
[Task: S1 Begins execution on behalf of: C1 at t = 2]
[Task: S1 Ends execution on behalf of: C1 at t = 3]
[Task: C1 Begins execution at t = 3]
[Task: C1 Ends execution at t = 4]
[Task: C2 Begins execution at t = 4]
[Task: C2 Ends execution at t = 5]
[Task: C2 Calls server: Sl at t = 5]
[Task: S1 Begins execution on behalf of: C2 at t = 5]
[Task: S1 Ends execution on behalf of: C2 at t = 6]
[Task: C2 Begins execution at t = 6]
[Task: C2 Ends execution at t = 7]

Test Complete *

Figure B-11 Expected Events for BI_08

CMU/SEI-92-TR-1 71

[Task: C5 Begins execution at t = 1]
[Task: C5 Ends execution at t = 2]
[Task: C5 Calls server: S1 at t = 2]
[Task: S1 Begins execution on behalf of: C5 at t = 2]
[Task: C4 Begins execution at t = 3]
[Task: C4 Ends execution at t = 4]
[Task: C4 Calls server: S2 at t = 4]
[Task: S2 Begins execution on behalf of: C4 at t = 4]
[Task: C3 Begins execution at t = 5]
[Task: C2 Begins execution at t = 6]
[Task: C2 Ends execution at t = 7]
[Task: C2 Calls server: S1 at t = 7]
[Task: C1 Begins execution at t = 8]
[Task: C1 Ends execution at t = 9]
[Task: C1 Calls server: S2 at t = 9]
[Task: S2 Ends execution on behalf of: C4 at t = 10]
[Task: S2 Calls server: S1 at t = 10]
[Task: S1 Ends execution on behalf of: C5 at t = 12]
[Task: S1 Begins execution on behalf of: S2 at t = 12]
[Task: S1 Ends execution on behalf of: S2 at t = 14]
[Task: S2 Begins execution on behalf of: C4 at t = 14]
[Task: S2 Ends execution on behalf of: C4 at t = 16]
[Task: S2 Begins execution on behalf of: C1 at t = 16]
[Task: S2 Ends execution on behalf of: C1 at t = 17]
[Task: C1 Begins execution at t = 17]
[Task: C1 Ends execution at t = 18]
[Task: S1 Begins execution on behalf of: C2 at t = 18]
[Task: S1 Ends execution on behalf of: C2 at t = 19]
[Task: C2 Begins execution at t = 19]
[Task: C2 Ends execution at t = 20]
[Task: C3 Ends execution at t = 21]
[Task: C4 Begins execution at t = 21]
[Task: C4 Ends execution at t = 22]
[Task: C5 Begins execution at t = 22]
[Task: C5 Ends execution at t = 23]

Test Complete

Figure B-12 Expected Events for BI_09

72 CMU/SEI-92-TR-1

[Task: C5 Begins execution at t = 1]
[Task: C5 Ends execution at t = 2]
[Task: C5 Calls server: S1 at t = 2]
[Task: S1 Begins execution on behalf of: C5 at t = 2]
(Task: S1 Ends execution on behalf of: C5 at t = 5]
[Task: S1 Calls server: S2 at t = 5]
(Task: S2 Begins execution on behalf of: S1 at t = 5]
[Task: C4 Begins execution at t = 6]
[Task: C4 Ends execution at t = 7]
[Task: C4 Calls server: S2 at t = 7]
[Task: C3 Begins execution at t = 8]
[Task: C3 Ends execution at t = 9]
[Task: C3 Calls server: S3 at t = 9]
[Task: S3 Begins execution on behalf of: C3 at t = 9]
[Task: C2 Begins execution at t = 10]
[Task: C2 Ends execution at t = 11]
[Task: C2 Calls server: S4 at t = 11]
[Task: S4 Begins execution on behalf of: C2 at t = 11]
[Task: S4 Ends execution on behalf of: C2 at t = 12]
(Task: C2 Begins execution at t = 12]
[Task: C2 Ends execution at t = 13]
[Task: C1 Begins execution at t = 14]
[Task: C1 Ends execution at t = 15]
[Task: C1 Calls server: S3 at t = 15]
[Task: S3 Ends execution on behalf of: C3 at t = 16]
[Task: S3 Calls server: S4 at t = 16]
[Task: S4 Begins execution on behalf of: S3 at t = 16]
[Task: S4 Ends execution on behalf of: S3 at t = 19]
[Task: S3 Begins execution on behalf of: C3 at t = 19]
[Task: S3 Ends execution on behalf of: C3 at t = 22]
[Task: S3 Begins execution on behalf of: C1 at t = 22]
[Task: S3 Ends execution on behalf of: C1 at t = 23]
[Task: S3 Calls server: S4 at t = 23]
[Task: 84 Begins execution on behalf of: S3 at t = 23]
[Task: S4 Ends execution on behalf of: S3 at t = 24]
[Task: S3 Begins execution on behalf of: C1 at t = 24]
[Task: S3 Ends execution on behalf of: C1 at t = 25]
[Task: C1 Begins execution at t = 25]
[Task: C1 Ends execution at t = 26]
[Task: C3 Begins execution at t = 26]
[Task: C3 Ends execution at t = 27]
[Task: S2 Ends execution on behalf of: S1 at t = 28]
[Task: S2 Begins execution on behalf of: C4 at t = 28]
(Task: 82 Ends execution on behalf of: C4 at t = 29]
[Task: C4 Begins execution at t = 29]
[Task: C4 Ends execution at t = 30]
(Task: Si Begins execution on behaif of: CS at t = 30]
(Task: S1 Ends execution on behalf of: C5 at t = 33]
[Task: C5 Begins execution at t = 33]
[Task: C5 Ends execution at t = 34]

. Te st C o m p le te

Figure B-13 Expected Events for B/10

CMU/SEI-92-TR-1 73

[Task: C2 Calls server: S2 at t = 1]

[Task: S2 Begins execution on behalf of: C2 at t = 1]
[Task: Cl Begins execution at t = 2]

[Task: Cl Ends execution at t = 3]

[Task: Cl Calls server: Si at t = 3]

[Task: S2 Ends execution on behalf of: C2 at t = 4]

[Task: S1 Begins execution on behalf of: C1 at t = 4]

[Task: Si Ends execution on behalf of: C1 at t = 5]
[Task: S1 Calls server: S2 at t = 5]

[Task: S2 Begins execution on behalf of: Sl at t = 5]
[Task: S2 Ends execution on behalf of: Sl at t = 6]
[Task: S1 Begins execution on behalf of: C1 at t = 6]
[Task: S1 Ends execution on behalf of: C1 at t = 7]
[Task: Cl Begins execution at t = 7]
[Task: Cl Ends execution at t = 8]
[Task: C2 Begins execution at t = 8]
[Task: C2 Ends execution at t = 9]

Test Complete

Figure B-14 Expected Events for PC_01

74 CMU/SEI-92-TR-1

[Task: C2 Begins execution at t = 1]

[Task: C2 Ends execution at t = 2]
[Task: C2 Calls server: S2 at t = 2]

[Task: S2 Begins execution on behalf of: C2 at t = 2]
[Task: Cl Begins execution at t = 3]
[Task: Cl Ends execution at t = 4]
[Task: Cl Calls server: Si at t = 4]

[Task: S2 Ends execution on behalf of: C2 at t = 5]
[Task: S2 Calls server: Sl at t = 5]
[Task: S1 Begins execution on behalf of: S2 at t = 5]
[Task: S1 Ends execution on behalf of: S2 at t = 7]
[Task: S2 Begins execution on behalf of: C2 at t = 7]
[Task: S2 Ends execution on behalf of: C2 at t = 9]
[Task: S1 Begins execution on behalf of: Cl at t = 9]
[Task: Si Ends execution on behalf of: Cl at t = 11]
[Task: S1 Calls server: S2 at t = 11]
[Task: S2 Begins execution on behalf of: Sl at t = 111
[Task: S2 Ends execution on behalf of: Sl at t = 13]
[Task: S1 Begins execution on behalf of: Cl at t = 13]
[Task: S1 Ends execution on behalf of: Cl at t = 15]
[Task: Cl Begins execution at t = 15]
[Task: Cl Ends execution at t = 16]
[Task: C2 Begins execution at t = 16]
[Task: C2 Ends execution at t = 17]

Test Complete

Figure B-15 Expected Events for PC_02

CMU/SEI-92-TR-1 75

[Task: C3 Calls server: S1 at t = 1]
[Task: S1 Begins execution on behalf of: C3 at t = 1]

[Task: C2 Begins execution at t = 2]

[Task: C2 Ends execution at t = 3]
[Task: C2 Calls server: S2 at t = 3]

[Task: Cl Begins execution at t = 4]

[Task: Cl Ends execution at t = 5]
[Task: Cl Calls server: Sl at t = 5]

[Task: S1 Ends execution on behalf of: C3 at t = 6]
[Task: S1 Calls server: S2 at t = 6]

[Task: S2 Begins execution on behalf of: Sl at t = 6]
[Task: S2 Ends execution on behalf of: Sl at t = 9]

[Task: S1 Begins execution on behalf of: C3 at t = 9]
[Task: S1 Ends execution on behalf of: C3 at t = 12]
[Task: S1 Begins execution on behalf of: Cl at t = 12]
[Task: S1 Ends execution on behalf of: Cl at t = 13]
[Task: S1 Calls server: S2 at t = 13]
[Task: S2 Begins execution on behalf of: Sl at t = 13]

[Task: S2 Ends execution on behalf of: Sl at t = 14]
L S 1 Begins execution on behalf of: Cl at t = 14]
[Task: S1 Ends execution on behalf of: Ci at t = 15]
[Task: C1 Begins execution at t = 15]
[Task: C1 Ends execution at t = 16]
[Task: S2 Begins execution on behalf of: C2 at t = 16]
[Task: S2 Ends execution on behalf of: C2 at t = 17]
[Task: S2 Calls server: S1 at t = 17]
[Task: S1 Begins execution on behalf of: S2 at t = 17]
[Task: S1 Ends execution on behalf of: S2 at t = 18]
[Task: S2 Begins execution on behalf of: C2 at t = 18]
[Task: S2 Ends execution on behalf of: C2 at t = 19]
[Task: C2 Begins execution at t = 19]
[Task: C2 Ends execution at t = 20]
[Task: C3 Begins execution at t = 20]
[Task: C3 Ends execution at t = 21]

Test Complete

Figure B-17 Expected Events for PC_04

CMU/SEI-92-TR-1 77

[Task: C2 Begins execution at t = 1]
[Task: C2 Ends execution at t = 2]
[Task: C2 Calls server: S2 at t = 2]
[Task: S2 Begins execution on behalf of: C2 at t = 2]
[Task: C1 Begins execution at t = 3]
[Task: C1 Ends execution at t = 4]
[Task: C1 Calls server: S1 at t = 4]
[Task: S1 Begins execution on behalf of: C1 at t = 4]
[Task: S1 Ends execution on behalf of: C1 at t = 5]
[Task: C1 Begins execution at t = 5]
[Task: C1 Ends execution at t = 6]
[Task: S2 Ends execution on behalf of: C2 at t = 7]
[Task: C2 Begins execution at t = 7]
[Task: C2 Ends execution at t = 8]

Test Complete *

Figure B-18 Expected Events for PC_05

78 CMU/SEI-92-TR-1

[Task: C3 Calls server: S2 at t = 1]
[Task: S2 Begins execution on behalf of: C3 at t = 1]
[Task: C2 Begins execution at t = 2]
[Task: C2 Ends execution at t = 3]
[Task: C2 Calls server: S2 at t = 3]
[Task: CI Begins execution at t = 41
[Task: C1 Ends execution at t = 5]
[Task: C1 Calls server: S1 at t = 5]
[Task: S1 Begins execution on behalf of: C1 at t = 5]
[Task: Si Ends execution on behalf of: C1 at t = 6]
[Task: C1 Begins execution at t = 6]
[Task: C1 Ends execution at t = 7]
[Task: S2 Ends execution on behalf of: C3 at t = 8]
[Task: S2 Begins execution on behalf of: C2 at t = 8]
[Task: S2 Ends execution on behalf of: C2 at t = 9]
[Task: C2 Begins execution at t = 9]
[Task: C2 Ends execution at t = 10]
[Task: C3 Begins execution at t = 10]
[Task: C3 Ends execution at t = 11]

Test Complete

Figure B-19 Expected Events for PC_06

CMU/SEI-92-TR-1 79

[Task: C1 Begins execution at t = 1]
[Task: C1 Ends execution at t = 2]
[Task: C1 Calls server: S1 at t = 2]
[Task: S1 Begins execution on behalf of: C1 at t = 2]
[Task: S1 Ends execution on behalf of: C1 at t = 3]
[Task: S1 Begins Suspension on behalf of: C1 at t = 3]
[Task: C2 Begins execution at t = 3]
[Task: C2 Ends execution at t = 4]
[Task: C2 Calls server: S2 at t = 4]
[Task: S1 Ends Suspension on behalf of: C1 at t = 5]
[Task: S1 Begins execution on behalf of: C1 at t = 5]
[Task: S1 Ends execution on behalf of: C1 at t = 6]
[Task: C1 Begins execution at t = 6]
[Task: C1 Ends execution at t = 7]
[Task: S2 Begins execution on behalf of: C2 at t = 7]
[Task: S2 Ends execution on behalf of: C2 at t = 9]
[Task: C2 Begins execution at t = 9]
[Task: C2 Ends execution at t = 10]

Test Complete

Figure B-20 Expected Events for PC_07

80 CMU/SEI-92-TR-1

[Task: C3 Calls server: S3 at t = 1]
[Task: S3 Begins execution on behalf of: C3 at t = 1]
[Task: C2 Begins execution at t = 2]
[Task: C2 Ends execution at t = 3]
[Task: C2 Calls server: S2 at t = 3]
[Task: Cl Begins execution at t = 4]
[Task: Cl Ends execution at t = 5]
[Task: Cl Calls server: Si at t = 5]
[Task: S1 Begins execution on behalf of: Cl at t = 5]
[Task: S1 Ends execution on behalf of: Cl at t = 6]
[Task: S1 Calls server: S2 at t = 6]
[Task: S2 Begins execution on behalf of: Sl at t = 6]
[Task: S2 Ends execution on behalf of: Sl at t = 7]
[Task: S1 Begins execution on behalf of: Cl at t = 7]
[Task: S1 Ends execution on behalf of: Cl at t = 8]
[Task: Cl Begins execution at t = 8]
[Task: Cl Ends execution at t = 9]
[Task: S3 Ends execution on behalf of: C3 at t = 10]
[Task: S3 Calls server: Sl at t = 10]
[Task: S1 Begins execution on behalf of: S3 at t = 10]
[Task: Si Ends execution on behalf of: S3 at t = 13]
[Task: S3 Begins execution on behalf of: C3 at t = 13]
[Task: S3 Ends execution on behalf of: C3 at t = 16]
[Task: S2 Begins execution on behalf of: C2 at t = 16]
[Task: S2 Ends execution on behalf of: C2 at t = 17]
[Task: S2 Calls server: S3 at t = 17]
[Task: S3 Begins execution on behalf of: S2 at t = 17]
[Task: S3 Ends execution on behalf of: S2 at t = 18]
[Task: S2 Begins execution on behalf of: C2 at t = 18]
[Task: S2 Ends execution on behalf of: C2 at t = 19]
[Task: C2 Begins execution at t = 19]
[Task: C2 Ends execution at t = 20]
[Task: C3 Begins execution at t = 20]
[Task: C3 Ends execution at t = 21]

Test Complete *******************

Figure B-21 Expected Events for PC_08

CMU/SEI-92-TR-1 81

[Task: C3 Calls server: S3 at t = 1]
[Task: S3 Begins execution on behalf of: C3 at t = 1]
[Task: C2 Begins execution at t = 2]
[Task: C2 Ends execution at t = 3]
[Task: C2 Calls server: S2 at t = 3]
[Task: S3 Ends execution on behalf of: C3 at t = 4]
[Task: S3 Calls server: S1 at t = 4]
[Task: S1 Begins execution on behalf of: S3 at t = 4]
[Task: C1 Begins execution at t = 5]
[Task: C1 Ends execution at t = 6]
[Task: C1 Calls server: S1 at t = 6]
[Task: S1 Ends execution on behalf of: S3 at t = 7]
[Task: S1 Begins execution on behalf of: C1 at t = 7]
[Task: S1 Ends execution on behalf of: C1 at t = 8]
[Task: SI Calls server: S2 at t = 8]
[Task: S2 Begins execution on behalf of: S1 at t = 8]
[Task: S2 Ends execution on behalf of: S1 at t = 9]
[Task: S1 Begins execution on behalf of: C1 at t = 9]
[Task: S1 Ends execution on behalf of: C1 at t = 10]
[Task: C1 Begins execution at t = 10]
[Task: C1 Ends execution at t = 11]
[Task: S3 Begins execution on behalf of: C3 at t = 11]
[Task: S3 Ends execution on behalf of: C3 at t = 13]
[Task: S2 Begins execution on behalf of: C2 at t = 13]
[Task: S2 Ends execution on behalf of: C2 at t = 15]
[Task: S2 Calls server: S3 at t = 15]
[Task: S3 Begins execution on behalf of: S2 at t = 15]
[Task: S3 Ends execution on behalf of: S2 at t = 17]
[Task: S2 Begins execution on behalf of: C2 at t = 17]
[Task: S2 Ends execution on behalf of: C2 at t = 19]
[Task: C2 Begins execution at t = 19]
[Task: C2 Ends execution at t = 20]
[Task: C3 Begins execution at t = 20]
[Task: C3 Ends execution at t = 21]

Test Complete ******************

Figure B-22 Expected Events for PC_09

82 CMU/SEI-92-TR-1

[Task: C2 Calls server: S2 at t = 1]
[Task: S2 Begins execution on behalf of: C2 at t = 1]
[Task: CI Begins execution at t = 2]
[Task: C1 Ends execution at t = 3]
[Task: C1 Calls server: S1 at t = 3]
[Task: S2 Ends execution on behalf of: C2 at t = 4]
[Task: S2 Begins Suspension on behalf of: C2 at t = 4]
[Task: S2 Ends Suspension on behalf of: C2 at t = 6]
[Task: S2 Begins execution on behalf of: C2 at t = 6]
[Task: S2 Ends execution on behalf of: C2 at t = 8]
[Task: S1 Begins execution on behalf of: C1 at t = 8]
[Task: S1 Ends execution on behalf of: C1 at t = 9]
[Task: S1 Calls server: S2 at t = 9]
[Task: S2 Begins execution on behalf of: S1 at t = 9]
[Task: S2 Ends execution on behalf of: S1 at t = 10]
[Task: S2 Begins Suspension on behalf of: S1 at t = 10]
[Task: C2 Begins execution at t = 10]
[Task: C2 Ends execution at t = 11]
[Task: S2 Ends Suspension on behalf of: S1 at t = 12]
[Task: S2 Begins execution on behalf of: $1 at t = 12]
[Task: S2 Ends execution on behalf of: S1 at t = 13]
[Task: S1 Begins execution on behalf of: C1 at t = 13]
[Task: S1 Ends execution on behalf of: C1 at t = 14]
[Task: C1 Begins execution at t = 14]
[Task: C1 Ends execution at t = 15]

Test Complete

Figure B-23 Expected Events for PC_10

CMU/SEI-92-TR-1 83

[Task: C5 Begins execution at t = 1]
[Task: C5 Ends execution at t = 2]
[Task: C5 Calls server: S1 at t = 2]
[Task: S1 Begins execution on behalf of: C5 at t = 2]
[Task: C4 Begins execution at t = 3]
[Task: C4 Ends execution at t = 4]
[Task: C4 Calls server: S2 at t = 4]
[Task: C3 Begins execution at t = 5]
[Task: C2 Begins execution at t = 6]
[Task: C2 Ends execution at t = 7]
[Task: C2 Calls server: S1 at t = 7]
[Task: CI Begins execution at t = 8]
[Task: C1 Ends execution at t = 9]
[Task: C1 Calls server: S2 at t = 9]
[Task: S2 Begins execution on behalf of: C1 at t = 9]
[Task: S2 Ends execution on behalf of: C1 at t = 10]
[Task: C1 Begins execution at t = 10]
[Task: C1 Ends execution at t = 11]
[Task: S1 Ends execution on behalf of: C5 at t = 12]
[Task: S1 Begins execution on behalf of: C2 at t = 12]
[Task: S1 Ends execution on behalf of: C2 at t = 13]
[Task: C2 Begins execution at t = 13]
[Task: C2 Ends execution at t = 14]
[Task: C3 Ends execution at t = 15]
[Task: S2 Begins execution on behalf of: C4 at t = 15]
[Task: S2 Ends execution on behalf of: C4 at t = 17]
[Task: S2 Calls server: S1 at t =17]
[Task: S1 Begins execution on behalf of: S2 at t = 17]
[Task: S1 Ends execution on behalf of: S2 at t = 19]
[Task: S2 Begins execution on behalf of: C4 at t = 19]
[Task: S2 Ends execution on behalf of: C4 at t = 21]
[Task: C4 Begins execution at t =21]
[Task: C4 Ends execution at t = 22]
[Task: C5 Begins execution at t = 22]
[Task: C5 Ends execution at t = 23]

Test Complete

Figure B-24 Expected Events for PC_11

84 CMU/SEI-92-TR-1

[Task: C5 Begins execution at t = 1]
[Task: C5 Ends execution at t = 2]
[Task: C5 Calls server: S1 at t = 2]
[Task: S1 Begins execution on behalf of: C5 at t = 2]
[Task: S1 Ends execution on behalf of: C5 at t = 5]
[Task: SI Calls server: S2 at t = 5]
[Task: S2 Begins execution on behalf of: S1 at t = 5]
[Task: C4 Begins execution at t = 6]
[Task: C4 Ends execution at t = 7]
[Task: C4 Calls server: S2 at t = 7]
[Task: C3 Begins execution at t = 8]
(Task: C3 Ends execution at t = 9]
[Task: C3 Calls server: S3 at t = 9]
[Task: S3 Begins execution on behalf of: C3 at t = 9]
[Task: C2 Begins execution at t = 10]
[Task: C2 Ends execution at t = 11]
[Task: C2 Calls server: S4 at t = 11]
[Task: S3 Ends execution on behalf of: C3 at t = 13]
[Task: S3 Calls server: S4 at t = 13]
Task: S4 Begins execution on behalf of: S3 at t = 13]
[Task: C1 Begins execution at t = 14]
[Task: Cl Ends execution at t = 15]
[Task: C1 Calls server: S3 at t = 15]
[Task: S4 Ends execution on behalf of: S3 at t = 17]
[Task: S3 Begins execution on behalf of: C3 at t = 17]
[Task: S3 Ends execution on behalf of: C3 at t = 20]
[Task: S3 Begins execution on behalf of: C1 at t = 20]
[Task: S3 Ends execution on behalf of: C1 at t = 21]
[Task: S3 Calls server: S4 at t = 21]
[Task: S4 Begins execution on behalf of: S3 at t = 211
[Task: S4 Ends execution on behalf of: S3 at t = 22]
[Task: S3 Begins execution on behalf of: C1 at t = 22]
[Task: S3 Ends execution on behalf of: C1 at t = 23]
[Task: CI Begins execution at t = 23]
[Task: C1 Ends execution at t = 24]
[Task: S4 Begins execution on behalf of: C2 at t = 24]
[Task: S4 Ends execution on behalf of: C2 at t = 25]
[Task: C2 Begins execution at t = 25]
[Task: C2 Ends execution at t = 26]
[Task: C3 Begins execution at t = 26]
[Task: C3 Ends execution at t = 27]
[Task: S2 Ends execution on behalf of: S1 at t = 28]
[Task: 52 Begins execution on behalf of: C4 at t = 28]
[Task: S2 Ends execution on behalf of: C4 at t = 29]
[Task: C4 Begins execution at t = 29]
[Task: C4 Ends execution at t = 30]
[Task: S1 Begins execution on behalf of: C5 at t = 30]
[Task: S1 Ends execution on behalf of: C5 at t = 33]
[Task: C5 Begins execution at t = 33]
[Task: C5 Ends execution at t = 34]

.. * Test Complete

Figure B-25 Expected Events for PC_12

CMU/SEI-92-TR-1 85

[Task: C5 Begins execution at t = 1]
[Task: C5 Ends execution at t = 2]
[Task: C5 Calls server: S1 at t = 2]
[Task: S1 Begins execution on behalf of: C5 at t = 2]
[Task: C4 Begins execution at t = 3]
[Task: C3 Begins execution at t = 4]
[Task: C3 Ends execution at t = 5]
[Task: C3 Calls server: S2 at t = 5]
[Task: C2 Begins execution at t = 6]
[Task: C1 Begins execution at t = 7]
[Task: C1 Ends execution at t = 8]
[Task: C1 Calls server: S1 at t = 8]
[Task: S1 Ends execution on behalf of: C5 at t = 9]
[Task: S1 Begins execution on behalf of: C1 at t = 9]
[Task: S1 Ends execution on behalf of: C1 at t = 10]
[Task: C1 Begins execution at t = 10]
[Task: C1 Ends execution at t = 11]
[Task: C2 Ends execution at t = 12]
[Task: S2 Begins execution on behalf of: C3 at t = 12]
[Task: S2 Ends execution on behalf of: C3 at t = 13]
[Task: C3 Begins execution at t = 13]
[Task: C3 Ends execution at t = 14]
[Task: C4 Ends execution at t = 15]
[Task: C5 Begins execution at t = 15]
[Task: C5 Ends execution at t = 16]

Test Complete

Figure B-26 Expected Events for PC_13

86 CMU/SEI-92-TR-1

Appendix C Example of Test Specification

-. NAME.
- tstchb.ada

-TITLE.
- TeST._CHaracteristics Body

-. DESCRIPTION.

-. VERSION.
- 4.2 modified on 2/28/91

-. COMMENTS.

-. EXTERNALPACKAGES.
- PACKAGE NAME PARAMETERS USAGE

- GeneratorStructure
- Customize

-. INTERNALPACKAGES.
- PACKAGE NAME PARAMETERS USAGE

. *......*

with GeneratorStructure;
use Generator_Structure;
package body TestCharacteristics Is
begin

TestSuite:=
(NumberOfTests => 25,
Test =>

(1 =>...

8 =>
(Number Of Tasks => 5,
:Main UnitName => Set-String ('bi_05"),
:Generated File => Set_String ("bi_05.ada"),
:Scheduling => BI,
:Tasks => ((TaskType => Client,

TaskName => C1,
OffsetStartTime => 6,
Priority => P10,
Execution Pattern =>

(Number_Of_Events => 3,
Event Array =>

(1 => (Client Execution, 1),
2 => (Server_Call, S1, El),
3 => (ClientExecution, 1)

CMU/SEI-92-TR-1 87

(TaskType => Client,
* ' TaskName C~ 2,
*OffsetStartTime => 5,
* Prorit => P9,

*ExecutionPattern =>
(Numnber_OfEvents => 1,

* ,Event-.Array =
* * (1 => (ClientExecution, 2)

(Task_ype => Client,
* .Task_-Name => C3,

OffsetStartTime => 1,
Priority => P8,
ExecutionPattern =>

(NumberOfEvents => 3,
* .Event Array =

* , (1 => (ClientExecution, 1),
2 => (Server_-Call, Si, E2),
3 => (ClientExecution, 1)

(TaskType => Server,
TaskName = 1

* Entries =
* *(Number _Of_Entries => 2,

EntryArray =
~1=>(EntryNamne => El,

'ExecutionPattern =>
(NumberOfEvents => 1,
EventArray =

(1 => (ServerExecution, 1)

2 (~Entry-Name => E2,

~ExecutionPattern =>

Eventrray =

(=>(ServerExecution, 2),

(1=> (ServerExecution, 2),

88 CMU/SEI-92-TR-1

(TaskType => Server,
:TaskName => S2,

Entries =>
(NumberOfEntries => 1,
EntryArray =>

(I =>(EntryName => El,
ExecutionPattern =>

(NumberOfEvents => 1,
EvenLArray =>

(1 => (ServerExecution, 2)

)

9 =>...

25 =>...
)):

end TestCharacteristics;

CMU/SEI-92-TR-1 89

90 CMU/SEI-92-TR-1

Appendix D Code for Test Case BI_05
This appendix shows the code generated for test case BI_05. The code is generated in a
single file. We have split this file into subsections to help the reader identify the various
generated components. The specification that was sent to the generator is given in Appen-
dix C on page 87. The diagram describing this test case is given in Figure A-9 on page 36.

D.1 BI_05_TestHarness Package Specification
................................ tt

- Test-case file
- built by Generator tool
.................... . *

with System;
with Calendar; use Calendar;
with HarnessConstants;
package bi_05 TestHarness Is

procedure StartRun(Start Time: In TIME);
task TestDone Is

entry Client C1 Done;
entry Client C2_Done;
entry Client C3 Done;
entry Complete;
pragme Priority (HarnessConstants.TestDonePriority);

end TestDone;
end bi_05_TestHarness;

D.2 BI_05_ClientCl_Package Specification
with System;
with Calendar; use Calendar;
with Harness Constants;
package bi 05 ClientClPackage Is

task C1Task Is
entry START(Start_Time: In TIME);
pragma Priority (HarnessConstnts.P1O);

end Cljask;
end bi_05_Client_C1lPackage;

D.3 BI_05_ClientC2_Package Specification
with System;
with Calendar; use Calendar;
with HarnessConstants;
package bi 05 ClientC2_Package Is

task C2_Task Is
entry START(StartTime : In TIME);
pragme Priority (Harness Constants.Pg);

end C2_Task;
end bi_05_ClientC2 Package;

CMU/SEI-92-TR-1 91

DA4 Bi_05_ClientC3_Package Specification
with System:
with Calendar; use Calendar;
with Harness_-Constants;
package bi_05_ -Client -C3 -Package Is

task 03_Task I.
entry START(Start_-Time: In TIME);
pragma Priority (HarnessConstants.PB);

end C3_Task;
end bi_05_Client_03_Package;

D.5 BI_05_Server_51_-Package Specification
with Calendar;
with Vendor _Specifics;
with Harness_-Constants; use Harness_-Constants;
package bi_-05_-Server S1l Package Is

task S1_Taskis
entry GetLId(TaskId: out Vendor-Specifics.Task-ld);
entry El (Task_.Number: In Task -ID-ype);
entry E2 (Task-Number: In Task-lQ-ype);

end Si_-Task;
end bj_05_Server_Si Package;

D.6 BI_05 ServerS2_Package Specification
with Calendar;
with Vendor _Specifics;
with Harness-Constants; use HarnessConstants;
package bi_-05_Serer S2 - ackage is

task S2_Task is
entry GetL-Id(TaskId :out VendorLSpecifics.Task Id);
entry El (Task-..Number: In TaskJDjypo);

end S2_-Task;
end bi_05_ServerS2_Package;

92 CMU/SEI-92-TR-1

D.7 BI_05_TestHarness Package Body
with System,
with 10 -Pkgs;
with Calendar;
with Harness_-Constants;
with VendorSpecifics;
with bi_05_ClientCLPackage;
with bi_05_CientC2LYackage,
with bi_05_ClientC3-Package;
with bi_05_.ServerSLPackage;
with bi_05_ServerS2 Package;
package body bLOS_ TestHarness Is

SI_-TaskId Vendo Specifics. TaskId;
52_TaskId VendorSpecificsTaskId;
precedure Start_-Run(Start - ime: In TIME) Is

procedure SetServerPriorities Is
use Calenda;

begin

- Set the piriority tar each server, and, it PCP, set
- the priority ceiling.

VendorSpedfics.changeprity(
S1iTask_-Id,
HarnessConstants.Serverj'rinty);

Vendor Specifics.change~prioity(
$2_-Task_-id.
Harness_-Constants.Server-riority);

end SetServerPniorities;
begin

bi_05_;ServerSI Package.Si Task.Getjid(Si-Task-id)
bi_05_server_52-.Package.52 Task.Get-id(S2_Task~id);
SetServerPrioritfies;
bi_-05_-ClientCl-Package.Cl Task.START(Startjie);
bi_05_ClientC2 Package.C2_Task.START(Start-irne);
bi_05_ClientC3 Package.C3_.Task.START(Start.Tirne);

exception
when OTHERS =>

10O- Pkgs.Txt o.PutjLine(* Unexpected Exception in StartRun)

end Start_-Run;
taok bodIy Test-Done Is
begin

- Wait for each client to finish

accept ClientLC1_Done;
accept ClientLC2_Done;
accept ClienL-C3..Done;

- Synchronize with Main program (Test is Done)

accept Complete;
exception

when OTHERS =>
IOPkgs.TxtjIo.Put-Line(-* Unexpected Exception in TestDone Task)

end Test-Done;
end bi_05_TestHarness;

CMU/SEI-92-TR-1 93

D.8 BI_05_ClientCl_-Package Body
with bi_05_Test_-Harness;
with Harness-Support;
with 10_Pkgs;
with Harness Event LogManager; use HarnessEvenLog.Manager;
with Harness,_Constants; use Harness Constants;
with bi_05_Server_SI_Package;
package body bLOSClientCl1_Package Is

task body Cljask Is
mnit :constant DURATION := 6.0;
ExecTime_1 censtant DURATION: 1.0;
ExecTime_2 constant DURATION := 1.0;
C1 _Task_-Start: TIME;

begin

- Wait for StartTime (Reference to time = 0) & then
- Suspend client unfti it is time to begin execunon

accept START(StartTime : In TIME) de
C ITask_-Start: StartTime + Init;

end START;
HarnessSupport.Suspend Task(Cl Task Start);.

- Client execution

Log-Event(C 1. None, ClientExecBcgins);
HarnessSupport.SpendTime(Exec -Time 1);
LogEvent(C 1. None, ClientLExec.Ends);

- Call Server

Log-Event(CI, S1, ServerCallBegins);
bi_05_Server_SIPackage.SljTask.E1(CI);

- Client execution

LogEvent(C1, None, ClientLExec..Begins);
Harness Support.Spend _Time(Exec -Time -2);
Log-Event(CI, None, Client -Exeq-Ends);
bi_-05_-TestHamess.TestDone.ClientCl_Done; -Signal Client Finished

exception
when OTHERS =>

10 - kgs.Txt lo.Put-Unec- Unexpected Exception in bLOS _ClientCl Task *)
end C1_ask;

end bi_05_ClientClPackage;

94 CMU/SEI-92-TR-1

D.9 BI_05_ClientC2_Package Body
with bi_-05_-TestHarness;
with Harness-..Support;
with IOPkgs;
with Harness_-Event -LogManager; use HarnessEvent_Log-Manager;
with Harness_-Constants; use Harness_-constants;
package body bi O 5_-Client_C2_Package Is

task body 02 Task Is
)nit :constant DURATION: 5.0;
ExecT imeI1 constant DURATION: 2.0;
C2_-Task_-Start: TIME;

begin

- Wait for Start-Time (Reference to time = 0) & then
- Suspen.' client until it is time to begin execution

accept START(Start-Time : In TIME) do
C2_-Task_-Start := StartTime + mnit;

end START;.
Hamess-Support.Suspend-Task(C2-TaskStart);

- Client execution

LogEvent(C2, None, Client-Exec-Begins);
Harness~Support. SpendTime(Exec lime .1);
LogEvent(C2, None, Client -Exec -Ends);
bi_-05_-TestHamess.TestDone.Client_02_Done; - Signal Client Finished

exception
when OTHERS =>

10_-Pkgs.Txt I o.Put _Line(-* Unexpected Exception in bi_05_Client_02 Task)
end 02_Task;

end bi_05_ClientC2ypackage;

CMU/SEI-92-TR-1 95

D.1 0 BI_05_ClientC3_Package Body
with bL.O1LTestHarness;
with HarnessSupport;
with 10_Pkgs;
wit Harness EventLogManager; use Hamoess..EvenlLogManager;
with Harness_Constants; use HarnessConstants;
with bi_05_ServerSi_Package;
package body bL 05 -Client_0 3_-Package I.

task body 03 Task Is
mnit :constant DURATION: 1.0;
Exec_-Time_1 :constant DURATION := 1.0;
ExecTime_2 :constant DUPATION := 1.0;
03_-Task_-Start: TIME;

begin

- Wait for Start_-Time (Reference to time = 0) & then
- Suspend client until it is time to begin execution

accept START(StartTime : In TIME) do
03_Task_Start := Start-Time + mnit;

end START;
HsrnessSupport.Suspend Task(C3 TaskStart);

- Client execution

LogEvent(C3, None, Client-Exec -Begins);
Harness...SupportSpond Time(Exec -Time 1);
LogEvent(C3, None, ClientLExec..Ends);

- Call Server

LogEvent(C3, S1, ServerCallBegins);
bi_05_ServerSiPackage.Sl-Task.E2(C3);

- Client execution

LogEvent(C3, None, Client -Exec -Begins);
Harness -Support.Spernd Time(Exec Time 2);
Log.Event(C3, None, Client-Exec -Ends);
bi_05_Test_-Hamess.TestDone.Cleent_03_Done; - Signal Client Finished

exception
when OTHERS =

10_-Pkgs.Txt lo.PuLUne(-* Unexpected Exception in biLO5_Client_03 Task)
end 03_Task;

end bi_05_Client_03_Package;

96 CMU/SEI-92-TR-1

D.11 BE05ServerSi_-Package Body
with Harness -Support;
with Calendar; use Calendar;
with Harness_-EventLog Manager; use Harness EventLogManager;
with Harness_-Constants; use HarnessConstants;
with bi_05_-ServerS2 -Package;
package body bi-OSServerSiPackage is

task body SL-Task Is
ExecTime_1: constant DURATION := 1.0;
Exec - imeo_2: constant DURATION := 2.0;
Exec_-Time_3: constant DURATION := 2.0;

begin

- Get my id

accept Gtjld (TaskId : out Vendor.Specifics.Taskjld) do
TaskI d: Vendor_.Spocifics.GetTask;

end Get_1d;

- Endless loop servicing clients

loop
select

accept El (Task-Number: In TaskIDJype) do

- Server Execution

Log...Event(S1, Task-Number, Server Exec-Begins);
Harness Support.Spond _Time(Exec Time 1);
LogEvent(S1, Task-Number, ServerExecEnds);

end El;
or

accept E2 (Task-Number : In TaskIDjType) do

- Server Execution

Log...Event(S1, Task-Number, Server..Exoc...Bogins);
Harness -SupportSpend .Time(Execjime....2);
Log_.Event(S1, Task.Numcer, ServerExecEnds);

- Server Call

LogEvent(Sl, S2, ServerCallBegins);

bi_05_ServerS2_Package.S2_Task.E1(S1);

- Server Executon

Log..Event(S1. Task-Number, Server...ExcBegins);
Harness Support.Spend _Time(Exec Time 3);
LogEvengS1, Task-Number, ServerExecEnds);

end E2;
or

terminate; - when server is ne-longer Callable
end *slecw;

end loop;
end S1iTask;

end bi_05_ServerSL-Packago;

CMU/SEI-92-TR-1 97

D.1 2 BI_05_ServerS2_Package Body
with Harness -Support;
with Calendar; use Calendar;
with HarnessEventLogManager; use HarnessEvenLogManager;
with HarnessConstants; use Harness_Constants;
package body bi o 5 Seve_S2 _Package Is

task body S2 - ask Is
Exec_lime_1: constant DURATION: 2.0;

begin

- Get my id

accept Get -Id (TaskI d :out VendorSpecifics.Taskjd) do
TaskI- d : Vendor _Specifics.GetTask;

end Get-ld;

- Endless loop servicing clients

loop
select

accept El (Task_Number: In TaskID)_Type) do

-Server Execution

Log..Event(S2, TaskNumber. SerrExeqcBegins);
Harness Support.Spend lime(Exec-ime -1);
LogEvent(S2, Task-Number, Server.Exec..Ends);

end ElI;
or

terminate; - when server is no-longer Callable
end select;

end loep;
end S2_Task;

end bi 05_Server_52_Package;

D.1 3 Main Procedure for BI_05
with bi_05_TestHarness;
with HarnessEventLogjanager;
with HarnessConstants;
with Harness -Support;
with Calendar; use Calendar;
procedure bi_05 Is

pragma Pnoty (HarnessConstants.MainPriority);
StartTime : TIME;

begin
Harness SupportCalibrate SpendcLime; - Calibration
Harness-.Event -LogManager.lnitialize(Startjime); - Initialize Logger
bi_05_TestHarness.StarL-Run(StarLTime); - Start Clients
bi_-05_-Test_-Harness.Test-Done. Complete; - Walt for Clients
Harness -Event Log-Manager.Pnnt-imeUnes; - Print lime-line
HarnessEventLogManager.Ouit; - Stop Logger

end bi_05;

98 CMU/SEI-92-TR-1

Appendix E Obtaining Source Code and
Information

Contact Keith Kohout at Naval Weapons Center Code 3916 (619-939-1278; e-mail:
keith@sol.nwc.navy.mil) for additional information and access to the software. The
tests are also available by anonymous FTP from the SEI (ftp.sei.cmu.edu) in the
directory pub/RMA-Validation-Tests.

CMU/SEI-92-TR-1 99

100 CMU/SEI-92-TR-1

UNL[MrrED, UNCLASSIFIED
38CURITY ..AsSFICATION OF(7M MOB

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIB UTION/AVAILABILITY OF REPORT

N/A Approved for Public Release
2b. DECLASSIFICATIONDOWNGRADING SC E Distribution Unlimited
N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S 5. MONITORING ORGANIZATION REPORT NUMBER ")

CMU/SEI-92-TR-1 ESD-92-TR -1

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Software Engineering Institute (ifapplicable) SEI Joint Program Office
SEI

6c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

Carnegie Mellon University ESD/AVS
Pittsburgh PA 15213 Hanscom Air Force Base, MA 01731

Ba. NAME OFFUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGA ZATION (if applicable) F1 962890C0003
SEI Joint Program Office ESD/AVS

8c. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.

Camegie Mellon University PROGRAM PROJECT TASK WORK UNTr
Pittsburgh PA 15213 ELEMENTNO NO. NO NO.

63756E N/A N/A N/A
11. TITLE (Include Secuity Clasificaton)

Ada Validation Tests for Rate Monotonic Scheduling Algorithms
12 PERSONAL AUThOR(S)

Keith A. Kohout, Kent Meyer, John B. Goodenough
13a. TYPE OF REPORT 13b.TIME COVERED 14. DATE OF REPORT (Yr.. Mo., Day) 15. PAGE COUNT

Final IFROM TO February 1992 107
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse of necessary and identify by block number)

F GROUP SUB. GR. Ada Rate Monotonic

basic inheritance real-time systems
priority ceiling task scheduling

! 9. ABSTRACT (Continue on rv= fif nemsary and identify by block number)

This report presents a set of tests for checking whether an Ada runtime system properly supports
certain rate monotonic scheduling algorithms, specifically, the basic inheritance and priority ceiling
protocols. These tests are intended to be used by vendors and by users to validate implementations
of these protocols. The report describes the tests and how they are to be used. The source code is
available electronically.

(please turn over)

20. DIMsnMUI'ION/AVAILABIITY OF ABSTRACT 21. -BSTRACT SECURITY CLASSIFICATION

UNACSSIFIIUN/UUMITED3 SAME AS RPTQ DTC USERS Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER andude Am Code) 22c. OFFICE SYMBOL

John S. Herman, Cap', USAF (412) 268-7631 ESD/AVS (SEI)

D FORM 1473.83 AM EDITION od I]AN 73 IS OBSOLETE UNLIMITED. UNCLASSIFIED
SECUrrY CLASSFICATION OF ThI;

TSTRAcT -cmnid from pape one. block 19

